WebDNN: Fastest DNN Execution Framework on Web Browser

Masatoshi Hidaka*
The University of Tokyo
Tokyo, Japan
hidaka@mi.t.u-tokyo.ac.jp

Yoshitaka Ushiku

The University of Tokyo
Tokyo, Japan
ushiku@mi.t.u-tokyo.ac.jp

ABSTRACT

Recently, deep neural network (DNN) is drawing a lot of attention
because of its applications. However, it requires a lot of computa-
tional resources and tremendous processes in order to setup an exe-
cution environment based on hardware acceleration such as GPGPU.
Therefore, providing DNN applications to end-users is very hard.
To solve this problem, we have developed an installation-free web
browser-based DNN execution framework, WebDNN. WebDNN
optimizes the trained DNN model to compress model data and
accelerate the execution. It executes the DNN model with novel
JavaScript API to achieve zero-overhead execution. Empirical eval-
uations show that it achieves more than two-hundred times the
unusual acceleration. WebDNN is an open source framework and
you can download it from https://github.com/mil-tokyo/webdnn.

CCS CONCEPTS

« Software and its engineering — Software libraries and repos-
itories; « Information systems — Mobile information processing
systems;

KEYWORDS

Deep Learning, Web Browser, GPGPU, Acceleration, Cross Platform,
Open Source Software, Computer Vision

ACM Reference format:

Masatoshi Hidaka, Yuichiro Kikura[1], Yoshitaka Ushiku, and Tatsuya Harada.
2017. WebDNN: Fastest DNN Execution Framework on Web Browser. In
Proceedings of ACM Multimedia conference, Mountain View, CA USA, Oct
2017 (ACMMM'’17), 4 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SUBMITTED to ACM MULTIMEDIA 2017 OPEN SOURCE SOFT-
WARE COMPETITION

“Both are equal contribution.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACMMM’17, Oct 2017, Mountain View, CA USA

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxX-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Yuichiro Kikura*
The University of Tokyo
Tokyo, Japan
kikura@mi.t.u-tokyo.ac.jp

Tatsuya Harada
The University of Tokyo / RIKEN
Tokyo, Japan
harada@mi.t.u-tokyo.ac.jp

Y @ hitps/mil-tokyo.github.io/webdnn/neural_style_transfer.html

Contents Output

Ready(backend: webassembly)

Backend Contents Source

WebAssembly v [ll Sample Image v

Figure 1: Demonstration page of WebDNN. Neural Style
Transfer model, in which a content image and a style image
are mixed by DNN, is running on a web browser. WebDNN
converts DNN models to enable fast execution on web
browsers.

1 INTRODUCTION

Recently, deep neural network (DNN) is attracting a lot of atten-
tion in various fields such as image and video recognition, natural
language processing and gaming Al In these fields, DNNs are ap-
plied for various products. However, DNNs are computationally
expensive and generally hardware acceleration is required for its
execution, and so it is not practical to execute DNN on end-user
devices such as laptops or smartphones.

One of the solutions to this is cloud computing. The applica-
tions running on end-user devices send a query to a computational
server. The server processes it and sends back the result. However,
this solution has two problems. First, the communication between
devices and the server has a lot of latency, and it is not suitable
for real-time tasks and processing large data like videos. Second,
even when the data contains private information and users do not
want to upload it onto the server, sending the data is inevitable and
necessary. This problem has become more crucial with the devel-
opment of the Internet of Things (IoT) and the increasing number
of sensor devices.

As opposed to that, in another solution, DNN applications are
implemented as native applications and run on end-user devices [7].
In this case, an application has to be installed to access low-level
APIs and require the use of GPU acceleration. However, it is not
preferable to install native applications for a good user experience.

https://github.com/mil-tokyo/webdnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACMMM’17, Oct 2017, Mountain View, CA USA

In fact, there are few people who dedicate their time to installing
research demo applications using DNN.

In this paper, we present an installation-free DNN execution
framework, WebDNN. WebDNN executes DNN models on a web
browser. Usually, web browsers are already installed on end-user
devices and users are familiar with how to use it. Therefore, us-
ing WebDNN, DNN applications can be provided easily, without
any difficulty in installing a native application. In order to accom-
plish maximum speed on web browsers, advanced optimizations
specialized for the inference phase of DNNs are implemented.

The main highlights of WebDNN are as follows:

Non overhead interface
JavaScript is a standard programing language running on web
browsers. It is executed by an interpreter. Therefore, it requires
computing overhead and it cannot completely harness the capacity
of the CPU. The same problem is encountered in GPU. Modern
web browsers support WebGL, which is a JavaScript API to use
GPU. However, this API is designed for graphics processing and is
not suitable for general purpose computation. In addition, using
WebGL for general purpose computing incurs overhead costs.

Keras.js [1] is a JavaScript framework to execute DNN models
on a web browser. It uses weblas [3], which is a matrix operation
library such as single precision general matrix-matrix production
(SGEMM), but because of the overhead in using WebGL for general
purpose computing, it cannot bring out the full performance of
GPU. Keras.js also supports CPU-only execution. However, this
implementation is very naive and much slower than the native
applications because of JavaScript’s overhead costs.

In contrast, WebDNN uses next generation JavaScript API, We-
bGPU for GPU execution, and WebAssembly for CPU execution.
These APIs help to bring out the full performance of GPU and CPU.

Inference-phase-specialized optimization
To achieve speedier execution, optimizing the computation graph of
DNN models is very important. Theano [9], which is a computation
graph execution framework, supports these features. Execution
of DNN consists of two phases, the training phase and the infer-
ence phase. The training phase updates the parameters with the
back-propagation technique. The inference phase makes predic-
tions (forward-propagation only) for the actual task. Theano is
designed to be used not only in the inference phase but in the
training phase as well. In this case, the framework must preserve
the auxiliary data. If the framework focuses on only the inference
phase, it can optimize the computation graph more aggressively.

WebDNN focuses on only the inference phase execution on
end-user devices and supports aggressive optimization. This opti-
mization pipeline can be applied for models trained with various
DNN frameworks. It is not required to edit the training codes.

In section 2, technologies used in WebDNN are described. Us-
ages are described in section 3. Then section 4 shows empirical
evaluations.

2 OVERVIEW OF WEBDNN

Figure 2 shows the pipeline of WebDNN. WebDNN consists of two
modules - the graph transpiler, which transpiles and optimizes

Masatoshi Hidaka, Yuichiro Kikura, Yoshitaka Ushiku, and Tatsuya Harada

trained model into an executable format on the web browser and
the descriptor runner, which executes the converted model on the
web browser.

2.1 Graph Transpiler

Graph transpiler is a module which transpiles and optimizes the
DNN model trained by some other framework into an executable
format on the web browser.

2.1.1 Intermediate Representation. During transpilation, DNN is
represented as a common intermediate representation (IR). Models
trained with various frameworks are converted into IR.

Figure 3 shows an example of IR. It not only contains informa-
tion on the structure of the computational graph, but additional
information such as memory order, and the attributes of operation
as well. This information is used in the optimization phase.

2.1.2 Model Converter. Model converter converts models trained
with other DNN frameworks into IR. By using common IR format
in the optimization and the generation phases, many modules are
reused for various frameworks. In this paper, we have implemented
converters for Caffe, Keras and Chainer.

2.1.3 Optimization Rules. IRs generated by the model converter
are optimized based on several optimization rules. WebDNN has
many rules to transform sub structures of a computation graph into
a more optimal structure. Examples of optimization rules are as
follows:

MergeElementwise

Activation function such as ReLU (f(x) = max(0, x)) is one of
the most important operation in DNN. Most of these operations
are element-wise operations and require low computation power.
Therefore when doing these operations on the GPU, the dispatch-
ing operations in JavaScript become a bottleneck situation. This
causes the GPU pipeline to stall and it is not able to bring out the
complete performance of the GPU.

In MergeElementwise rule, these element-wise operations are
concatenated with heavier operations such as fully connected
layer and convolution. It reduces kernel dispatching to only once
and hides the latency of dispatching these kernels.

MergeAffine
Affine transform is also frequently used in DNN. In this rule,
affine transform and other operations such as fully connected
layer and scaling layer (in batch normalization) are concatenated.
For example, f(x) = diag(s)(Wx) where s is the scaling factor,
W is the weight of the fully connected layer, the formulation trans-
forms to f(x) = (diag(s)W)x and diag(s)W is pre-computed
within the graph transpiler.

Inplace

For each operation, if input variables are not used after this oper-
ation, the memory allocated for these variables can be reused for
output variables. This optimization reduces memory consump-
tion and overhead time of memory allocation.

OptimizeSgemm
SGEMM (Single-precision General Matrix-Matrix product) is one
of the most heavy operations in DNN. The performance is largely

WebDNN: Fastest DNN Execution Framework on Web Browser

ACMMM’17, Oct 2017, Mountain View, CA USA

D Graph Transpiler

Model Definition
(Caffe, Keras, etc.)

Optimization Rules

Model Converter [—» %ﬂ H e 4—|:|—> E§: —| Kernel Generator > Descriptor Runner

Optimized IR =

D Web Browser
e

raph Descriptor

GPU | CPU

Trained Parameters

Optimized Parameters

Figure 2: Pipeline of WebDNN

<Linear inputs={
x: <Variable shape=[1, 2048] order=NC>,
w: <Constant shape=[2048, 1000], order=CN>
}, outputs={
y: <Variable shape=[1, 1000], order=NC>
}, attributes=[PostElementwise]>
<AxiswiseBias inputs={
x: <Variable shape=[1, 1000] order=NC>,
b: <Constant shape=[1000], order=C>
}, outputs={
y: <Variable shape=[1, 1000], order=NC>
}, attributes=[
PostElementwise, Inplace, Axiswise[C]]>

Figure 3: Example of intermediate representation of
‘WebDNN.

affected by the layout of matrices in the memory. This rule opti-
mizes the data order of input and the output variables.

2.1.4 Kernel Generator. Kernel generator generates the graph
descriptor based on IR. A graph descriptor contains information
about DNN model, which is required for it to execute on the web
browser. Each kernel generator supports one backend. We have im-
plemented three types of kernel generators: WebGPU, WebAssem-
bly, and Fallback. By using these three kernel generators, WebDNN
can work on all modern browsers.

2.1.5 Weight Compression. The weights data of DNN models
are very large. ResNet50 is popular image recognition model and
its weights data is about 100 MB. Transmitting these data on in-
ternet requires a lot of time. Therefore, WebDNN supports model
compression by 8bit approximation [2] and “deflate” compression
(using zlib library). Using this feature, the weight data of ResNet50
can be compressed to about 20 MB 1.

2.2 Descriptor Runner
Descriptor runner is a JavaScript library to load a generated graph

descriptor and execute the corresponding DNN model on the web
browser.

2.2.1 WebGPU. WebGL has been widely used as GPU API in
JavaScript. However, this API is designed for graphics processing
and there are many constraints in general purpose computing. For

I The size may be still large for mobile network to load every time, but HTMLS5 offline
application feature helps to cache it on the device permanently.

example, all matrix data should be converted to the image texture
format. These constraints become serious overhead.

WebDNN uses new GPU API called WebGPU. It supports com-
pute shader, which is a shader for general purpose computing. By
using WebGPU, we can use GPU for general purpose computing
with only little overhead. We have implemented this API on the
open source web browser, WebKit and it has already been shipped
in Safari Technology Preview.

2.2.2 Multi backend support. When Descriptor runner runs on
web browsers which do not support WebGPU, it uses CPU-based
environment called WebAssembly. WebAssembly is supported by
many modern web browsers, and can execute computationally
expensive tasks more efficiently than JavaScript. In graph descriptor
for WebAssembly, Eigen [4] is used to perform matrix multiplication
as fast as possible. Moreover, a WebWorker thread is launched
for executing DNN models in order to avoid blocking of the user
interface.

Fallback backend works when the web browser does not We-
bGPU nor WebAssembly. This backend is compatible with EC-
MAScript 3, so almost all web browsers can interpret it.

Backends that are compatible to the user’s web browser are
automatically identified and the corresponding graph descriptor is
loaded. Therefore, application developers can implement it with a
single interface regardless of what backend is used.

3 USAGE

In this section, the typical usage of WebDNN is illustrated with the
example of converting ResNet50 model from Keras for WebDNN.
ResNet50 accepts a color image of 224 X 224 pixels and classifies it
into 1,000 object classes.

3.1 Graph transpilation

The first step is to export the model in the standard format of Keras.

from keras.applications import resnet50

model = resnet50.ResNet50(include_top=True,\
weights="'imagenet')

model.save("resnet50.h5")

Then, transpile the model file trained with Keras into the graph
descriptor. The following single command accomplishes it.

python bin/convert_keras.py resnet50.h5 \
--input_shape '(1,224,224,3)"

For Caffe, almost the same procedure can be applied to Caf-
femodel file. For Chainer, there are no separate model file. Graph

ACMMM’17, Oct 2017, Mountain View, CA USA

transpiler analyzes the on-memory computational graph generated
by the “define-by-run” scheme.

3.2 Run DNN Model on Webpage

The procedure to execute a graph descriptor generated by the graph
transpiler in a web browser is as follows.

let runner;

async function init() {

// (1) Initialize DescriptorRunner

runner = await WebDNN.prepareAll('./model');
}

async function run() {
// (2.1) Set input data
runner.inputViews[0].set(loadImageData());

// (2.2) Run DNN model
await runner.run();

// (2.3) Show result
console.log(WebDNN.Math.argmax(
runner.outputViews[0]));

First, initialize the descriptor runner and load model data. When
performing this, WebDNN automatically identifies the running
environment and graph descriptors on the server, and then selects
the best backend. The placeholders of input / output variables of
DNN are returned. This initialization has to be called once. After
this, the DNN can be executed by setting the input and call “run”
method. Figure 1 shows a screenshot of the demo application which
converted Neural Style Transfer model [6], which is running on
Chrome for Android web browser.

4 EVALUATION

We evaluated the model execution speed of WebDNN with Keras.js.
We transpiled image classification model VGG16 [8], ResNet50 [5]
using these libraries and measured the model execution time for
one image on a web browser. The hardware is Mac Book Pro early
2015, Intel Core i5 2.7 GHz CPU, 16 GB Memory, Intel Iris Graphics
6100 GPU. The web browser is Safari Technology Preview 30.

The experimental results are shown in Fig. 4. When WebDNN
with WebGPU backend and all optimizations are enabled, 217x
speedup on VGG16 and 207x speedup on ResNet50 are achieved
compared to Keras.js with a CPU backend.

Additionally, we measured the speed on out-of-the-box Win-
dows 10 with Internet Explorer 11 environment, which represents
the environment in ordinary office. The hardware is Intel Core i5-
3337U 1.80GHz CPU, Intel HD Graphics 4000 GPU. The execution
speeds of ResNet50 are 9,495ms in WebDNN WebAssembly backend
2 8115ms in Keras.js GPU backend and 27,070ms in Keras.js CPU
backend. In the balance of GPU / CPU power in the hardwares,
WebAssembly (CPU-based) backend of WebDNN was comparable
with GPU backend of Keras.js. In each DNN model and backend,

2IE does not have WebGPU support.

Masatoshi Hidaka, Yuichiro Kikura, Yoshitaka Ushiku, and Tatsuya Harada

1000000

100000 s
85

10000 2369
1000

100

Elapsed Time [ms]

10

1

VGG16 ResNet50
Model esne

4Keras.js (GPU)
WebDNN (WebAssembly + Optimization)
‘WebDNN (WebGPU+Optimization)

Keras.js (CPU)
% WebDNN (WebAssembly)
‘WebDNN (WebGPU)

Figure 4: Processing time for each library and backend. “Op-
timization” indicates the optimization rules described in Sec.
2.1.3 are applied to the graph descriptor. Vertical axis is log-
arithmic scale and lower is better.

WebDNN obtains better results in terms of speed. More speed im-
provement is observed when the optimizations are applied in the
graph transpiler. We think these results came from WebDNN imple-
menting the optimization strategy specialized for DNN inference on
web browsers, that is quite different from the ordinary environment.

5 CONCLUSION

In this project, we developed a framework for executing a DNN
model on web browsers in order to provide an installation-free
DNN execution environment. By advanced optimizations of com-
putational graph and support from the latest web specifications,
we achieved a maximum of more than 200x speedup compared to
the existing framework.

ACKNOWLEDGMENTS

This work was partially supported by JST CREST Grant Number
JPMJCR1403, Japan. This work was also partially supported by the
Ministry of Education, Culture, Sports, Science and Technology
(MEXT) as "Seminal Issue on Post-K Computer".

REFERENCES

[1] Leon Chen. 2016. Keras.js. (2016). https://github.com/transcranial/keras-js.

[2] Tim Dettmers. 2016. 8-Bit Approximations for Parallelism in Deep Learning. In
Proceedings of the International Conference on Learning Representations (ICLR).

[3] Waylon Flinn. 2016. weblas. (2016). https://github.com/waylonflinn/weblas.

[4] Gaél Guennebaud, Benoit Jacob, and others. 2010. Eigen v3.
http://eigen.tuxfamily.org. (2010).

[5] Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR).

[6] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2015. Perceptual Losses for

Real-time Style Transfer and Single Image Super-Resolution. In Proceedings of

the International Conference on Machine Learning (ICML).

Seyyed Salar Latifi Oskouei, Hossein Golestani, Matin Hashemi, and Soheil Ghiasi.

2016. CNNdroid: GPU-Accelerated Execution of Trained Deep Convolutional

Neural Networks on Android. In Proceedings of the 2016 ACM on Multimedia

Conference (MM ’16). 1201-1205.

[8] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In Proceedings of the International
Conference on Learning Representations (ICLR).

[9] Theano Development Team. 2016. Theano: A Python framework for fast compu-
tation of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016).
http://arxiv.org/abs/1605.02688

[7

https://github.com/transcranial/keras-js
https://github.com/waylonflinn/weblas
http://arxiv.org/abs/1605.02688

	Abstract
	1 Introduction
	2 Overview of WebDNN
	2.1 Graph Transpiler
	2.2 Descriptor Runner

	3 Usage
	3.1 Graph transpilation
	3.2 Run DNN Model on Webpage

	4 Evaluation
	5 Conclusion
	Acknowledgments
	References

