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Abstract
Learning to represent and generate videos from unlabeled
data is a very challenging problem. To generate realistic
videos, it is important not only to ensure that the appear-
ance of each frame is real, but also to ensure the plausibil-
ity of a video motion and consistency of a video appear-
ance in the time direction. The process of video generation
should be divided according to these intrinsic difficulties. In
this study, we focus on the motion and appearance informa-
tion as two important orthogonal components of a video, and
propose Flow-and-Texture-Generative Adversarial Networks
(FTGAN) consisting of FlowGAN and TextureGAN. In or-
der to avoid a huge annotation cost, we have to explore a way
to learn from unlabeled data. Thus, we employ optical flow
as motion information to generate videos. FlowGAN gener-
ates optical flow, which contains only the edge and motion
of the videos to be begerated. On the other hand, Texture-
GAN specializes in giving a texture to optical flow gener-
ated by FlowGAN. This hierarchical approach brings more
realistic videos with plausible motion and appearance consis-
tency. Our experiments show that our model generates more
plausible motion videos and also achieves significantly im-
proved performance for unsupervised action classification in
comparison to previous GAN works. In addition, because our
model generates videos from two independent information,
our model can generate new combinations of motion and at-
tribute that are not seen in training data, such as a video in
which a person is doing sit-up in a baseball ground.

Introduction
Video understanding is a core problem in computer vi-
sion. Given the considerable progress in video recognition
(e.g., action classification, event detection), video generation
and unsupervised learning of video representation (e.g., fu-
ture frame prediction) have been gaining considerable atten-
tion. Automatic video generation can potentially help human
designers and developers to convert their high-level con-
cepts into pixel-level videos. Some works (Vondrick, Pirsi-
avash, and Torralba 2016; Saito and Matsumoto 2016) have
tried to generate videos with generative adversarial networks
(GANs) (Goodfellow et al. 2014) approach.

However, video generation is a very challenging task. The
difficulties lie not only on that (a) each frame should be a
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Figure 1: Generative pipeline of our FTGAN.

realistic image as generated image, but also that (b) the same
scene and foreground should be generated in each video and
that (c) the generated video should have plausible motion.

In this study, we focus on the above-mentioned funda-
mental difficulties of generating a realistic video and pro-
pose the generation of videos through GAN spitting into two
orthogonal information types: motion and appearance. Be-
cause previous GANs for video (Vondrick, Pirsiavash, and
Torralba 2016; Saito and Matsumoto 2016) have not focused
on these difficulties, they can not produce motion realistic
videos.

Unsupervised video generation should learn without any
annotation. Thus, we utilize optical flow as motion informa-
tion. Calculating optical flow does not require annotations
on each dataset and can be generally obtained with unsuper-
vised method, which means our method still can be trained
in an unsupervised manner.

Our model, Flow and Texture Generative Adversarial Net-
works (FTGAN), consists of two GANs: FlowGAN and
TextureGAN. We first generate optical flow with FlowGAN,
and then convert optical flow into RGB videos with Tex-
tureGAN. This hierarchical approach is explained in detail
below. The characteristics of optical flow are as follows: it
has edges of moving objects, contains time-directional con-
tinuity, and does not contain texture information. Therefore,
optical flow generation is much easier than RGB video gen-
eration. Optical flow generation first assures and achieves
reasonable motion and rough edges for generated videos.
Next, TextureGAN colors the optical flow supplementing
rough outlines. TextureGAN provides texture information
to the generated optical flow while maintaining scene and
foreground consistency. Thus, we can obtain more realistic
videos containing plausible motion.

As an application for video generation, it is important for
a model to express a wide range of datasets. However, in



the existing video generation, the appeance and motion are
limited to the combinations that exist in the dataset. Since
motion and appearance information are learnt separately, our
model can control the appearance and motion information of
a generated video independently. Thus, our model can gen-
erate nonexisting motion and attribute combination in the
training dataset comprising a video in which a person is do-
ing sit-up in a baseball ground.

It is also known that GAN can be used as an unsupervised
feature extractor. Thus, as well as previous generative adver-
sarial networks for video, we also perform motion recogni-
tion experiments. On the action recognition dataset UCF101
(Soomro, Zamir, and Shah 2012), our method has achieved
significantly improved accuracy over previous works (Von-
drick, Pirsiavash, and Torralba 2016; Saito and Matsumoto
2016).

Related Work
Image generation by using Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014; Radford, Metz, and Chin-
tala 2016) has become increasingly popular. For example, in
exploiting GAN, Pix2Pix (Isola et al. 2017) has succeeded
in converting images with the same edges between input
and target by using a U-net (Ronneberger, Fischer, and Brox
2015). For indoor-scene image generation, Style and Struc-
ture GAN (S2GAN) (Wang and Gupta 2016) focuses on
the basic principles by which indoor scene images have a
3D structure in the original world and have texture/style on
their surfaces. S2GAN first generates a 3D surface normal
map and then a 2D RGB image, given the generated sur-
face as the condition. In S2GAN, it is important to consider
fundamental information of target domains for generation.
Our proposed model is based on these generative models
(Goodfellow et al. 2014; Radford, Metz, and Chintala 2016;
Wang and Gupta 2016; Isola et al. 2017).

Future frame prediction (Oh et al. 2015; Mathieu, Cou-
prie, and LeCun 2016; Goroshin, Mathieu, and LeCun 2015;
Srivastava, Mansimov, and Salakhutdinov 2015; Ranzato
et al. 2014; Finn, Goodfellow, and Levine 2016; Lotter,
Kreiman, and Cox 2017; Villegas et al. 2017a; 2017b;
Xue et al. 2016) and future optical flow prediction (Walker,
Gupta, and Hebert 2015; Walker et al. 2016) have shown im-
pressive results. These studies are also related to our work in
terms of video generation. However, although some methods
(Mathieu, Couprie, and LeCun 2016; Villegas et al. 2017a;
2017b) exploits adversarial learning, our task completely
differs from future frame prediction as follows. First, while
future frame prediction gives the current frame or even the
past frames as a condition, our proposed model generates
a video only from Gaussian noise. Moreover, while future
frame prediction has a definite ground truth as the generating
target, our model discriminates a video based on whether it
is real. Therefore, our task can be considered as completely
different and a more difficult task than future frame predic-
tion.

We make use of an action recognition knowledge in
video generation. In action recognition, Two-stream (Si-
monyan and Zisserman 2014) has shown the importance
of optical flow. Two-stream learns texture and motion in-
formation separately with two networks: RGB-stream and

optical-flow-stream. Many later works on action recognition
(Sun et al. 2015; Feichtenhofer, Pinz, and Zisserman 2016;
Wang et al. 2016; Zolfaghari et al. 2017; Carreira and Zis-
serman 2017) employ this idea of splitting videos into or-
thogonal information. Thus, it turns out that optical flow is
important information for action recognition. In this study,
we show the importance of optical flow in video generation.

Video GAN (VGAN) (Vondrick, Pirsiavash, and Torralba
2016) has succeeded to generate scene-consistent videos by
generating the foreground and background separately, which
brings the generated videos scene consistency. The networks
of VGAN consist of 3D convolutions aiming at learning
motion information and appearance information simultane-
ously. However, since this method aims to capture motion
and appearance only with single-stream 3D convolutional
networks, the generated videos have problems with either
visual appearance or motion. Some generated videos have
plausible frames but no movement in the generated video.
The other generated videos have movements, but their move-
ments are implausible. Optical flow can solve these prob-
lems and provides richer motion information not only in
action recognition but also in video generation. In action
recognition, 3D convolutional networks only with RGB in-
put show inferior performance to networks with RGB and
optical flow inputs (Carreira and Zisserman 2017).

Temporal GAN (TGAN) (Saito and Matsumoto 2016)
aims to simplify 3D convolutions in order to split appear-
ance/motion information and train network parameters more
efficiently. TGAN first applies 2D convolutions to RGB im-
ages several times, and then applies 1D temporal convo-
lutions to activations resulting from the 2D convolutions.
However, if consecutive frames are made to have a small
resolution after applying several downsamplings, almost no
spatial change could be seen in the time direction. Actually,
in action recognition, TCL path of FSTCN (Sun et al. 2015),
which has an architecture similar to that of TGAN, does not
show improved performance over the RGB stream of Two-
stream, which is trained on RGB images frame by frame, on
the action recognition dataset UCF101 (Soomro, Zamir, and
Shah 2012). Therefore, when TGAN is trained on datasets
that contain a variety of scenes, although each frame be-
comes a realistic still image, different appearance and scenes
appear in the video, and the movement and consistency can
not be assured.

To generate appearance-and-motion-realistic videos, we
generate motion information and appearance information in
two separate stages. We first generate optical flow to main-
tain the consistency of motion, and then provide texture in-
formation to the generated optical flow maintaining the con-
sistency of appearance.

Preliminaries
Generative Adversarial Networks
Generative Adversarial Networks (GANs) (Goodfellow et
al. 2014) consist of two networks : Generator (G) and Dis-
criminator (D). G attempts to generate data appearing sim-
ilar to the given dataset. The input for G is a latent variable
z, which is randomly sampled from distribution pz (e.g., a
Gaussian distribution). Furthermore, D attempts to distin-
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Figure 2: Architecture of Texture GAN: Given the optical flow video from datasets and ztex as input, Texture Generator learns
to generate RGB videos. For foreground generation, we apply 3D convolution to all layers and use skip connection in several
layers as a U-net (Ronneberger, Fischer, and Brox 2015). For background generation, we apply 2D convolution to all layers.
The size of input and output video is 64x64 resolution and 32 frames, which is a little over a second.

guish between real data and fake data generated from G. A
GAN simultaneously updates these two networks, and the
objective function is given as follows :

min
G

max
D

V (G,D) = Ex∼pdata
[log(D(x))]

+ Ex∼pz [log(1−D(G(z)))]
(1)

Generative Adversarial Network for Video
Generative Adversarial Network for Video (VGAN) (Von-
drick, Pirsiavash, and Torralba 2016) is a video generative
network based on the concept of GANs. VGAN also consists
of Generator and Discriminator. The generator of VGAN has
a mask architecture to separately generate static background
and moving foreground:

G(z) = m(z)� f(z) + (1−m(z))� b(z) (2)

where � represents the element-wise multiplication,
m(z) is a spatiotemporal matrix with each pixel value rang-
ing from 0 to 1; it selects either the foreground f(z) or
the background b(z) for each pixel (x, y, t). To generate a
consistent background, b(z) produces a spatial static image
replicated over time. During learning, to encourage back-
ground image, L1 regularization λ‖m(z)‖1 for λ = 0.1 is
added on the mask to the GAN’s original objective function.

Method
Video generation is a difficult task in terms of not only gen-
erating natural frame images but also generating a consis-
tent moving video. Therefore, to obtain a video comprising
plausible motion and realistic frames, we split the generative
models into two networks: FlowGAN and TextureGAN. Af-
ter training each network separately, we conduct joint learn-
ing. Figure 1 shows the overview of our FTGAN.

FlowGAN: Optical Flow Generation Model
The architecture of FlowGAN is based on VGAN (Vondrick,
Pirsiavash, and Torralba 2016). However, considering that
the background optical flow should be zero if the camera is
fixed, our model does not comprise a background stream in
the generator. Instead of learning the background generator,
we give the zero matrix as b, which is equal to using only
the foreground stream of VGAN.

Gflow (zflow) = m (zflow)� f (zflow) (3)

TextureGAN: Optical Flow Conditional Video
Generation Model
As one of the simplest ways to generate video using optical
flow, we can warp the first image simply along the optical
flow. However, the videos generated by such a method tend
to be collapsed (Villegas et al. 2017b) especially on rela-
tively long videos. It is more appropriate to fuse image and
optical flow after feature-encoding them. Thus we take the
following approach. As shown in Figure 2, our TextureGAN
model considers the optical flow and ztex as inputs and out-
puts a video. The architecture of our generator is based on
VGAN and Pix2Pix (Isola et al. 2017). We employ the idea
of foreground/background separation from VGAN. For fore-
ground generation, we leverage optical flow which already
comproses rough edges of the target video. Thus, we uti-
lize the U-net architecture (Ronneberger, Fischer, and Brox
2015) as Pix2Pix.

Our Texture Generator Gtex is as follows :

Gtex (ztex, c) = m (ztex, c)� f (ztex, c)

+ (1−m (ztex, c))� b (ztex)
(4)

where, c is the ground truth optical flow. Note that we pro-
vide a ground truth optical flow to the discriminator as the
condition for TextureGAN training.
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Figure 3: Results of TextureGAN conditioned on ground truth optical flow that the network does not observe in the training on
two datasets. (Left: Penn Action, Right: SURREAL). The first line in each result shows the input optical flow and the middle
line shows the frames generated from the first line’s optical flow. The last line shows the ground truth frames corresponding to
input optical flow. In the third row of Penn Action, we can see that our model generates not only a person but also the bowling
ball. Animated gifs of these results can be seen in the supplemental material. Note that in this figure, t represents the frame
number in the videos.

Then, the loss functions for discriminator and the genera-
tor are as follows :
LDtex (x, ztex, c) = log (1−Dtex (Gtex (ztex, c) , c))

+ log (Dtex (x, c))

LGtex
(ztex, c) = log (Dtex (Gtex (ztex, c)))

(5)

where, x is the ground truth video.
FTGAN: Both Optical Flow and Video Generation
with Joint-Learning
Figure 1 shows system overview of FTGAN. We first train
FlowGAN and TextureGAN independently, and then merge
these networks through joint learning, during which the gen-
erator of the FlowGAN is updated depending on the loss
propagated from not only its own discriminator but also the
discriminator of TextureGAN. However, the loss from Tex-
tureGAN is a supplemental loss for FlowGAN; thus, we set

the weighting parameter λ = 0.1 as S2GAN (Wang and
Gupta 2016). Through this joint learning, we consider that
FlowGAN will become able to generate a complementary
optical flow suitable for video generation. Note that we use
the generated optical flow as a condition to the discrimina-
tor.
Ljoint
Gflow

(zflow, ztex) = LGflow
(zflow)

+ λ · LGtex(Gflow(zflow), ztex)
(6)

where ztex and zflow are independent variables.
Network Configuration
First, we train the FlowGAN and TextureGAN indepen-
dently by using the Adam (Kingma and Ba 2014) optimizer
with an initial learning rate α = 0.0002 and momentum pa-
rameter β1 = 0.5. The learning rate is decayed to 1/2 from
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Figure 4: Results of FTGAN generated from zflow and ztex. (Left: Penn Action, Right: SURREAL). Unlike TextureGAN,
our networks also generate optical flow images. We can observe that the generated optical flow contains plausible motion. For
example, the first row of Penn Action looks like jumping jacks. Although the generated images are clearer when we use the
ground truth optical flow than when we also generate optical flow, FTGAN generates the videos in which we can understand
what action is being done. For example, in the second row of Penn Action, the person is pitching a ball. In the third row of Penn
Action, the person is swinging a baseball bat. In the all results of SURREAL, we can confirm that the optical flow images have
reasonable human shape and the generated frames also look realistic frames. Animated gifs of these results can be seen in the
supplemental material.

its previous value six times during the training. The latent
variables ztex and zflow are Gaussian distributions with 100
dimensions. We set a batch size of 32. Batch normalization
(Ioffe and Szegedy 2015) and Rectified Liner Unit (ReLU)
activation are applied after every up-sampling convolution,
except for the last layer. For down-sampling convolutions,
we also apply batch normalization and LeakyReLU (Xu et
al. 2015) to all layers but only apply batch normalization
to the first layer. After training them independently, we join
both networks and train our FTGAN full-network. Follow-
ing S2GAN, we set a small learning rate α = 1e− 7 for the
FlowGAN and set α = 1e − 6 for the TextureGAN during
the joint learning.

Experiments
Evaluation of generative model is difficult due to its lack of
appropriate metrics (Theis, Oord, and Bethge 2015). Thus,
we evaluate our method on generation and recognition tasks
following previous works (Vondrick, Pirsiavash, and Tor-
ralba 2016; Saito and Matsumoto 2016). We first present our
experiment of video generation. Next, we present our experi-
ment on classifying actions to explore our model’s capability
to learn video representations in an unsupervised manner.

Dataset and Settings

For evaluating video generation, we conduct experiments
on two video datasets of human actions. For the real world
human video dataset, we use Penn Action (Zhang, Zhu,
and Derpanis 2013), which has 2326 videos of 15 different
classes and 163841 frames. We employ the original train/test
split. For the Computer Graphics (CG) human video dataset,
we use SURREAL (Varol et al. 2017), which is made by syn-
thesizing CG humans and LSUN (Yu et al. 2015) images,
and consists of 67582 videos. In the original train/test splits,
even test videos have 12538 videos, which contain 1194662
frames. Thus, we use original test videos for training and
1659 subset videos from the original train for testing. The
TexGAN and FlowGAN are trained in 60000 iterations re-
spectively on each dataset. We conducted joint learning with
10000 iterations on each dataset. For optical flow computa-
tion, we use Epic flow (Revaud et al. 2015). We resize all
frames and optical flow images to 76 × 76 resolution, and
augment them by cropping them into 64× 64 resolution im-
ages and randomly applying horizontal flips during training.
Note that we remove a few videos in each dataset because
they have less than 32 frames.



Table 1: We compare our methods and VGAN with A/B testing. The table shows the percentage of that workers who prefer
videos generated from each of our model instead of VGAN.

”Which human video looks more realistic ?” SURREAL Penn Action

Prefer TextureGAN (ours) over VGAN 44% 72%
Prefer FTGAN (ours) over VGAN 54% 58%

VGAN [26]

Flow given
TextureGAN

(ours)

FTGAN
(ours)

! " #! " $ ! " %

Penn Action

! " $&! " $' ! " '( ! " '%! " '# ! " )'

VGAN [26]

Flow given
TextureGAN

(ours)

FTGAN
(ours)

SURREAL

Figure 5: Qualitative comparison of our methods with VGAN. We also show several randomly sampled results of our methods
and VGAN in the supplemental material.

TextureGAN: Video Generation Results from
Ground Truth Optical Flow and ztex

Figure 3 shows the results of our TextureGAN given the
ground truth optical flow on Penn Action and SURREAL.
TextureGAN generates videos with plausible motion. Also,
on Penn Action, our method generates videos in which not
only the motion of the humans appears but also the motion of
the objects (e.g. the barbell in the second row , the bowling
ball in the last row) appear. This is because the optical flow
represents all moving objects as well as people, unlike key-
point information, (e.g., human joint positions), which only
represent human motion (Villegas et al. 2017b). Moreover,
the first row of Penn Action shows that our model gener-
ates the video in which a person is doing sit-up in a baseball
ground; this combination of appearance and motion infor-
mation does not exist in this dataset.

FTGAN: Video Generation Results from zflow and
ztex

In Figure 4, the results of our FTGAN are presented from
only the latent variables zflow and ztex. In this figure, al-
though the results are less clear than the videos generated
through the ground truth optical flow, we can observe plau-

sible moves in the results. For example, in Penn Action,
whereas VGAN does not generate videos with plausible mo-
tion, our TextureGAN generates a video in which a person
is pitching a baseball. For another example, in SURREAL,
whereas VGAN generates non-human like frames and disap-
pearing movement, our methods generate human like frames
and consistent motion.

Note that looking at the generated videos, it seems like
the frames towards the middle of a video are generally bet-
ter than frames at the beginning and the end. We believe
this is caused by the zero-padding in up-sampling convo-
lutions. In each convolutional layer, the beginning and the
end frames are partially convolved with zero-padding fea-
tures. This probably affects the quality of the borders of the
generated videos. The spatial borders appear at the edge of
each frame, thus they are not usually noticeable. However,
the temporal borders appear at the beginning and the end
frames (not only edge, but full frames), thus they are notice-
able.

Quantitative Comparison to Previous Study:
Human Evaluation
To evaluate our method quantitatively, it is desirable to al-
low humans to check the generated results. Thus, we use the



Table 2: Accuracy of unsupervised action classification on UCF101. We train our models with randomly initialized weights.
Note that while the first group from the top shows the methods trained with randomly initialized weights, the second group from
the top shows the methods pre-trained on 5000 hours video datasets. In addition, while Two-stream (Simonyan and Zisserman
2014) is trained in a supervised manner, the other methods, including our proposed methods, are trained in an unsupervised
manner.

Method Accuracy

Chance 0.9%
VGAN + Random Init (Vondrick, Pirsiavash, and Torralba 2016) 36.7%
TGAN: Image-discriminator + Linear SVM (Saito and Matsumoto 2016) 38.6%
TGAN: Temporal-discriminator + Linear SVM (Saito and Matsumoto 2016) 23.3%
FTGAN (ours): Flow-discriminator + Linear SVM 49.5%
FTGAN (ours): Texture-discriminator + Linear SVM 50.5%
FTGAN (ours): Flow-discriminator & Video-discriminator (fusion by Linear SVM) 60.9%

VGAN + Logistic Reg (Vondrick, Pirsiavash, and Torralba 2016) 49.3%
VGAN + Fine Tune (Vondrick, Pirsiavash, and Torralba 2016) 52.1%

RGB-stream in Two-stream (Simonyan and Zisserman 2014) 73.0%
Flow-stream in Two-stream (Simonyan and Zisserman 2014) 83.7%
Two-stream (fusion by Linear SVM) (Simonyan and Zisserman 2014) 88.0%

Amazon Mechanical Turk (AMT) to compare the results.
Table 1 shows A/B testing performances of the compari-
son between our methods and VGAN on AMT. We ask 160
unique workers to indicate which video looks more realistic
on 50 videos, and obtained 8000 opinions.

Although TextureGAN shows slightly inferior perfor-
mance to VGAN on SURREAL, our methods shows im-
proved performance over VGAN. Especially our methods
outperform VGAN on Penn Action, which contains more
varied motion than SURREAL. We can infer that it is impor-
tant to divide generation process into motion and appearance
as the dataset increases the complexity of motion.

Qualitative Comparison to Previous Study:
Visualized Results
We also compare the videos generated from our methods
(TextureGAN, FTGAN) with those generated from VGAN,
as shown in Figure 5. In this figure, we introduce examples
of videos used for comparison in AMT. On the each dataset,
the videos generated by VGAN do not show realistic moves,
and the contours of humans are not maintained during the
whole video. On the other hand, the videos generated by our
methods have plausible motion, and humans are seen in the
whole video consistently. We show several randomly sam-
pled gif animations in the supplemental material.

Unsupervised Action Classification
As part of the comparison with other GAN methods, we con-
ducted an experiment to investigate the unsupervised feature
expression learning capability of FTGAN, as the same way
with VGAN and TGAN. Although there are many other un-
supervised feature extraction methods, we chose the recent
GAN methods to compare the performance of our model
since it is also GAN-based.

Table 2 shows the action classification performance on
UCF101 (Soomro, Zamir, and Shah 2012). We train FT-
GAN on UCF101 with random initialized weights over three
splits. As TGAN, we extract the activation of the last layer

in the discriminator and learn a Linear SVM. To obtain
video features throughout the video, we use a sliding win-
dow with overlapping 16 frames to extract features from an
entire video as in C3D (Tran et al. 2015). For optical flow
estimation, we employ the algorithm proposed by Brox et
al. (Brox et al. 2004) following Two-stream (Simonyan and
Zisserman 2014).

Table 2 shows that both of our discriminators outperform
the discriminators of VGAN and TGAN. This improvements
suggests that separating information ensures the capture
of much richer video characteristics. Moreover, the fusion
of both discriminators achieves significantly improved re-
sults, in the same way as Two-stream, a supervised method,
achieves improved results by fusing the RGB-stream and the
Flow-stream. This indicates that each discriminator learns
complementary information. In other words, FlowGAN and
TextureGAN are considered to learn mainly about motion
and appearance information, respectively. The reason why
TextureGAN does not comprise the motion information
of FlowGAN although TextureGAN uses 3D convolution,
could be that the discriminator of TextureGAN receives an
optical flow as a condition. Thus, TextureGAN can focus
on learning appearance information. Note that the results of
”VGAN + Logistic Reg” and ”VGAN + Fine Tune” have
been achieved by 49.3% and 52.1% accuracy when pre-
trained on 5000 hours video datasets; this is not commensu-
rable with TGAN, ”VGAN + Random Init”, and our meth-
ods. However, the combination of both our discriminators
still shows superior performance over them even without
pre-training on the 5000 hours video dataset.

Conclusion and Future Work
In this study, we propose a FTGAN consisting of two GANs;
FlowGAN and TextureGAN. Each network deals with com-
plementary information: motion and appearance. Although
the generated video has low resolution, is only a few sec-
onds long, our model is able to generate videos success-
fully with more plausible motion than the other methods
(i.e., VGAN). In addition, we have succeeded in capturing



significantly improved unsupervised video representations,
confirming that each discriminator learns complementary in-
formation. Through this paper, we argue that it is important
not only for video recognition but also for video generation
to focus on a basic underlying principle of video.

We believe finding other architectures specific for optical
flow is a very important future work. It would also be inter-
esting to investigate whether the length of synthesized video
plays a factor in the comparison of previous works. The sep-
arate treatment of optical flow and texture can potentially
reduce the generation space and is expecting better results
on longer videos.
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