
DUALNET: DOMAIN-INVARIANT NETWORK FOR VISUAL QUESTION ANSWERING

Kuniaki Saito, Andrew Shin, Yoshitaka Ushiku, Tatsuya Harada∗

The University of Tokyo
7-3-1 Hongo Bunkyo-ku, Tokyo, Japan

{k-saito,andrew,ushiku,harada}@mi.t.u-tokyo.ac.jp

ABSTRACT

Visual question answering (VQA) tasks use two types of im-
ages: abstract (illustrations) and real. Domain-specific dif-
ferences exist between the two types of images with respect
to “objectness,” “texture,” and “color.” Therefore, achieving
similar performance by applying methods developed for real
images to abstract images, and vice versa, is difficult. This is
a critical problem in VQA, because image features are crucial
clues for correctly answering the questions about the images.
However, an effective, domain-invariant method can provide
insight into the high-level reasoning required for VQA. We
thus propose a method called DualNet that demonstrates per-
formance that is invariant to the differences in real and ab-
stract scene domains. Experimental results show that Dual-
Net outperforms state-of-the-art methods, especially for the
abstract images category.

Index Terms— Visual question answering, Multimodal
learning, Abstract images

1. INTRODUCTION

Multimodal learning incorporating vision and language has
become a popular research area in artificial intelligence. Im-
age captioning and visual question answering (VQA) are
tasks in which an artificial intelligence agent behaves as if it
precisely understands the content of natural images and lan-
guages [1, 2]. In both tasks, an artificial intelligence agent
needs to understand the relationship between image represen-
tations and sentence representations correctly. Particularly,
in VQA, we need to construct a model that understands the
question, locates or classifies the objects/scenes mentioned in
the question, and generates appropriate answers.

VQA comprises two task categories: one deals with real
images and the other handles abstract images [3]. All meth-
ods that involve real images, to the best of our knowledge,
use convolutional neural networks (CNNs) [4] trained on Im-
ageNet [5] to extract the features of real images. Conversely,
for abstract images (illustrations), different techniques are
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Fig. 1: Our proposed network: DualNet for abstract images.
We conducted both elementwise multiplication and summa-
tion to combine multimodal features and achieved state-of-
the-art performance on the VQA abstract image dataset.

employed, because objects in these images differ from those
in real images with respect to their objectness, texture, and
color. Furthermore, the number of abstract images is con-
siderably smaller than that of real images because of their
collection cost. For these reasons, it has widely been con-
sidered that successful methods for real images cannot be di-
rectly ported to the abstract scenes domain. Existing research
has not applied the same methods to both real and abstract
images. However, a method that is useful for both real and ab-
stract images would provide insight into the domain-invariant
high-level reasoning required for VQA.

We focus on the commonality in operations for real and
abstract images in VQA, namely the combination of sentence
and image representations for constructing multimodal fea-
tures. This operation is essential because, given the ques-
tion representation, it extracts image information that is useful
for the reply. Therefore, building a multimodal feature from
domain-invariant operations is important. In this paper, we in-
troduce an effective VQA network architecture that includes a
simple operation applicable to both real and abstract images,
by performing separate summation and multiplication opera-
tions on input features to form a common embedding space.
Our method, DualNet, results in good performance in both
domains; our method achieves state-of-the-art performance
on a VQA abstract scene dataset in particular. In Section 4,
we demonstrate DualNet’s clear advantage over methods that
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perform only one operation, including many recent state-of-
the-art methods. The contribution of this work is as follows:

• We propose an effective VQA network architecture
that performs both summation and multiplication when
combining features and is shown by experiments to be
useful across domains.

• This method outperforms others for abstract VQA
scenes and can serve as a new benchmark.

2. RELATED WORK

2.1. VQA for Real Images
[3] introduced a large-scale dataset for the VQA Challenge,
in addition to a baseline approach in which image and ques-
tion features are embedded to common space at the last state
prior to classification. Most methods used in VQA tasks es-
sentially follow the pipeline of this method [6, 7], in which
multimodal features are constructed from image and question
representations to output a correct label. Many recent pa-
pers reporting competitive results have relied heavily on var-
ious attention mechanisms. [7] introduced stacked attention
networks (SAN), which rely on the semantic representation
of each question to search for relevant regions in the image.
[8] proposed multimodal compact bilinear pooling for VQA
with an attention mechanism to fuse features. Unlike most
of the work, which concentrated on extracting information in
regions of interest, we focus on building rich features when
fusing image features and sentence features without spatial
attention, as features of abstract images do not contain spatial
information, in contrast with CNN features, which are dis-
cussed below.

2.2. VQA for Abstract Scenes
The VQA task for real images requires the use of a CNN to
extract representations from complex or noisy images. Con-
versely, VQA tasks for abstract images require capturing a
high-level concept from simple images because abstract scene
images are constructed from limited clipart patterns. [9] con-
verted the questions to a tuple containing essential clues to the
visual concept of the images. Each tuple (P,R, S) consists of
a primary object P , a secondary object S, and their relation
R. As mentioned in Section 1, current VQA methods that use
CNN features trained on real images perform poorly in the ab-
stract category. We directly implemented the VQA baseline
method provided by [10] on abstract images with ResNet152
[11] features. The total accuracy was 62.7%. On the other
hand, when using holistic features, the accuracy was 65.0%
[9]. This difference shows that the features of current state-
of-the art CNNs are less discriminative than the holistic fea-
tures for VQA. Therefore, in this paper, we propose to use
a method that does not depend on the spatial information of
CNN features to construct a commonly effective method for
real and abstract images.

3. METHOD

In this section, we describe the details of our proposed net-
work architecture, DualNet, and demonstrate its success in
VQA tasks for both real and abstract images.

3.1. Insight and Motivation
It is necessary to determine how to combine visual features
with sentence features, because a network cannot answer cor-
rectly unless it has sufficient knowledge of what is asked and
which features are necessary to ascertain the answer. [3]
employs elementwise multiplication for solving this prob-
lem. Another option for fusing the features is element-wise
summation. Previous studies have examined and compared
network behaviors based on the fusing mechanism, finding
that network performance varies according to the method by
which the image and sentence features are fused [12]. This
indicates that, even with nonlinear networks, information can
vary in accordance with the fusing method. Most architec-
tures used only one method to fuse features; for example,
summation or multiplication only.

Multiplication of two or three features is a nonlinear con-
version of different features. In contrast, summation is a lin-
ear conversion that is easy to represent neural networks (ex-
pressed by multiplication between an aligned identity matrix
and multimodal features). Importantly, expressing the projec-
tion of the multiplication from summation is difficult, for ex-
ample, representing xy from x+ y and vice versa. Therefore,
the information contained in features from multiplication and
summation will be substantially different. From this insight,
we propose a simple but effective network structure for VQA.
We propose to integrate elementwise summation and elemen-
twise multiplication; in other words, we implement a simple
polynomial function. We obtain equations in our network that
are in a similar form to the following:

(1 + x1 + x2 + x3 + · · ·xd)(1 + y1 + y2 + y3 + · · · yd). (1)

xi and yi denote the i-th dimension of an image and a sen-
tence feature respectively. Unfortunately, we cannot express
the product of different dimensions, such as x1y2. However,
other forms, such as x1 + y2 or x1y1 + x3y3, can be con-
structed. Moreover, we propose to use different types of im-
age features to fully take advantage of the variety of informa-
tion present. For example, holistic features used in abstract
scenes [9] display completely different characteristics from
CNN features. Likewise, for CNN features, different network
structures result in extracted features with different character-
istics. Therefore, DualNet benefits from exploiting a combi-
nation of features from different networks and methods.

3.2. Network Architecture

We now detail the theoretical background of our network. For
clarity, we will skip the notation for bias parameters in the fol-
lowing equations and consider a situation in which two types



of image features are used. The VQA task is formulated as

â = arg max
a∈R

p(a|i1, i2,x1,x2,x3, · · ·xt;θ), (2)

where â denotes the output answer, i1, i2 denotes image fea-
tures, x1,x2,x3, · · ·xt denotes a one-hot vector of question
words, R denotes possible answers, and θ denotes model pa-
rameters.

q = LSTM(x1,x2,x3, · · ·xt) (3)

First, we input the one-hot word vector to obtain question vec-
tor q from the last hidden layer of the LSTM [13]. We used
the same activation function as in [13].

iM1 = tanh(WM1i1) (4)
iM2 = tanh(WM2i2) (5)
qM = tanh(WMqq) (6)

fM = iM1 ◦ iM2 ◦ qM (7)

WM1 ,WM2 and WMq encode different features into the space
with the same dimension. Eqs. (4) - (7) correspond to the
fusing of image and text features by multiplication. ◦ refers
to elementwise multiplication.

iS1 = tanh(WS1i1) (8)
iS2 = tanh(WS2i2) (9)
qS = tanh(WSqq) (10)

fS = iS1 + iS2 + qS (11)

WS1 ,WS2 and WSq encode different features into the space
with the same dimension. Eqs. (8) - (11) correspond to the
fusing of features by summation. Our network does not share
weights between multiplication and summation because we
expect each operation to extract different information.

f = Concat(fM ,fS) (12)
p(a|i1, i2,x;θ) = wf2tanh(Wf1f) (13)

We concatenate the features from elementwise multiplication
and elementwise summation, and then input a fully-connected
layer with weight, Wf1 , to obtain the prediction. In this exam-
ple, we have shown a case using two kinds of image features.
We can alter the number of image features based on need, but
the overall workflow remains the same.

For real images, we used three kinds of image features:
L2-normalized features from the first fully-connected layer
(fc6) of VGG-19 [4] trained on ImageNet [5], and the upper-
most fully-connected layers from ResNet-152 and ResNet-
101 [11]. The proposed model architecture for abstract im-
ages is described in Fig. 1. It uses the L2-normalized holistic
feature and the fully-connected layer of ResNet-152.

4. EXPERIMENTS

In this section, we describe and discuss the results from ex-
periments using our DualNet architecture on a VQA dataset.
There are two tasks on the VQA dataset: open-ended and
multiple choice. In the open-ended task, the answer must be
determined solely from the question and the image. In the
multiple choice task, 18 candidate answers per question are
given. We evaluated our method on both the tasks. We used
the same metric as used in other works. Multiple ground truth
answers are attached to one question by some researchers. If
we obtain one answer for one question, we calculate the accu-
racy by the following metric. accuracy = min(the number
of humans that provided that answer)/3, 1)

4.1. Real Images
The VQA dataset consists of 82,783 training images, 40,504
validation images, and 81,434 test images. Three questions
are attached to each image. We evaluated our model using a
subset of the data, called the test-dev split on the VQA eval-
uation server. In this experiment, we used both the training
and validation splits for training. As the number of test sub-
missions for the complete test split is limited, evaluation on
the complete test split was restricted to selected key methods.
We tuned the parameter using the split of test-dev. We set
the learning rate of all methods (summation, multiplication,
and proposed method) as 0.0004. We tuned it on test-dev and
all methods showed better performance on that learning rate.
The LSTM network in our model consists of two layers with
512 hidden units. We used the 2,000 most frequent answers
as labels and relied on rms-prop to optimize our model. The
batch size was 300. All methods show slightly different per-
formance depending on the parameters, but the difference is
very small. The margin of the score between the proposed
method and baseline methods is more significant than what
can be expected by simply tuning hyperparameters.

Model performance changed slightly based on the dimen-
sion of common space. We present the result of 512 dimen-
sions as a single DualNet’s result. For the ensemble of Du-
alNets, we set the common space dimensions differently for
each unit. We changed the common space dimensions from
500 to 3000 for each DualNet unit in our ensemble, which
consisted of 19 DualNet units. We tuned the weight for each
unit in the ensemble based on its result on test-dev splits. As
we increased the number of units, we could observe improve-
ments in accuracy on test-dev, and the accuracy saturated at
around 19 units.

As baseline methods, we used networks that implemented
only summation or multiplication. For fair comparison, we
set the dimension of common space as 1,024 in summation-
and multiplication-only networks, because DualNet can be
considered to have a 1,024-dimensional common space. We
further compare our method with ensemble of summation-
and multiplication-only networks. We also show the result
of our method that uses only VGG network features.



Table 1: Performance on a test-dev split of real images. Sum only means using summation to combine image and sentence
features; likewise, Mul only uses only multiplication. DualNet* has two fully-connected layers after fusing features.

Open-Ended Multiple Choice
All Y/N Num Others All Y/N Num Others

deeper LSTM Q+norm [10] 57.75 80.5 36.8 43.1 62.70 80.5 38.2 53.0
SAN [7] 58.70 79.3 36.6 46.1 - - - -

DMN+[14] 60.30 80.5 36.8 48.3 - - - -
MCB[8] (w/o attention) 60.8 81.2 35.1 49.3 - - -
MCB[8] (with attention) 64.2 83.4 39.8 58.5 - - -

Sum only 58.78 78.6 36.0 47.0 63.64 78.6 37.7 56.7
Mul only 59.29 80.7 37.1 46.0 64.74 80.8 39.0 56.9

Ensemble of Sum and Mul 60.27 80.7 37.4 47.9 63.77 78.7 37.9 56.9
DualNet (only VGG) 59.03 80.7 36.6 45.6 64.52 80.8 38.9 56.4

DualNet 60.34 81.3 37.0 47.7 65.54 81.4 39.1 58.0
DualNet* 60.47 81.0 37.1 48.2 65.80 80.8 39.8 58.9

DualNet (ensembled) 61.47 82.0 37.9 49.2 66.66 82.1 39.8 59.5
Evaluation on test-std split

Open-Ended Multiple Choice
All Y/N Num Others All Y/N Num Others

deeper LSTM Q+norm [10] 58.2 80.6 36.5 43.7 63.09 80.6 37.7 53.6
AYN [12] 58.43 78.2 36.3 46.3 - - - -
SAN [7] 58.90 - - - - - - -

DMN+ [14] 60.36 80.4 36.8 48.3 - - - -
MRN [15] 61.84 82.4 38.2 49.4 66.33 82.4 39.6 58.4

MCB[8] (att models ensemble) 66.5 83.2 39.5 58.0 70.1 - -
DualNet (ensembled) 61.72 81.9 37.8 49.7 66.72 82.0 39.7 59.6

4.2. Abstract Scene
The abstract scenes category contains 20,000 training images,
10,000 validation images, and 20,000 test images, and each
image is accompanied by three questions. Unlike the real
image category, there is no test-dev split. We set the learn-
ing rate as 0.004. We first tuned hyperparameters on valida-
tion split, then trained our model on train and validation splits
using the hyperparameters from the beginning.Our proposed
model is shown in Fig. 1. We used L2-normalized ResNet152
and holistic features as image features. We used a two-layer
LSTM for question encoding and 500 possible answers. For
the ensemble model, we combined five models with different
common space dimensions.

We compared our method with summation- and
multiplication-only networks, as we did for real images. We
set the number of hidden units to 1024 when combining fea-
tures. However, we assume that the number of units can eas-
ily affect model performance, since the number of samples
is considerably smaller than that of real images. Then, we
implemented summation- and multiplication-only networks
with 512 units.

5. RESULT AND ANALYSIS
Table 1 shows the results of each method on the test-dev split
and on the test-std split. As shown in these tables, the pro-

posed method performed better than Sum only, Mul only, and
their ensemble model. We can clearly see the effectiveness of
our network structure in comparison with the summation- and
multiplication-only networks, which achieved performances
of 58.78% and 59.29%, respectively. The performance of the
summation network is poorer than that of the multiplication
network. However, when combining the two paths, we were
able to improve performance up to 60.34%. For both category
images, a simple ensemble of two networks results in poorer
performance than our method as seen from Table 2, and is
obvious in the multiple choice task. This indicates that fusing
features during training as in our method is important. Com-
pared with methods such as DMN [14], SAN [7], and FDA
[18], which used attention mechanisms, our model achieves
better performance. Compared with MCB (w/o attention) [8],
the performance of our model is comparable. The imple-
mentation of our model is considerably simpler than that of
their methods. Although it is true that combining multiple
image features improves the performance, we observed that
our model achieves performance comparable to that of other
methods even when we have only the VGG feature. Fig. 2
shows examples of questions and generated answers in the
case of real images, along with the images.

We further analyzed the output from summation and mul-



Table 2: Evaluation of each method on abstract scene test data from the VQA test server.

Open-Ended Multiple Choice
All Y/N Num Others All Y/N Num Others

holistic feature [9] 65.02 77.5 52.5 56.4 69.21 77.5 52.9 66.7
holistic + vlad + deep[16] 67.39 79.6 57.1 58.2 71.18 79.6 56.2 67.9

MRN [15] 62.56 79.1 51.6 48.9 67.99 79.1 52.6 62.0
Sum 512 units 66.24 78.6 53.1 58.0 - - - -
Mul 512 units 67.87 79.1 57.5 59.7 - - - -

Sum 1024 units 66.87 78.8 53.4 59.2 71.41 78.8 54.1 70.2
Mul 1024 units 68.00 79.5 57.1 59.8 72.65 79.5 57.4 71.2

Ensemble of Sum and Mul 68.80 79.9 57.3 61.3 72.60 79.5 57.9 70.9
DualNet 68.87 80.0 57.9 61.1 73.29 80.0 58.5 71.8

DualNet (ensembled) 69.73 80.7 58.8 62.1 74.02 80.8 59.2 72.4

(a) Q: What is the boy playing with?
A: teddy bear

(b) Q: Are there any animals swimming in
the pond? A: No

(c) Q: How many trees? A: 1

Fig. 2: Examples of questions and generated answers for abstract scenes

Table 3: Analysis of network performance inside DualNet.
fm and fs denote a feature from multiplication and summa-
tion respectively. wm and wm denote weights on each feature
inside DualNet.

Open-Ended
All Y/N Num Others

DualNet wmfm 42.7 51.3 25.6 39.3
DualNet wsfs 54.5 77.0 35.5 39.6

DualNet 60.34 81.3 37.0 47.7

tiplication networks inside DualNet, as shown in Table 3.
From this result, we observe that summation and multiplica-
tion inside DualNet extract completely different and less dis-
criminative representations, but combining them via DualNet
clearly improves their performance. It is very interesting to
see that the result of yes/no questions in the summation result
is lower than chance, which is about 70%, but performance
improves 77% to 81% when combined with multiplication.
In Fig. 3, we show examples of how each operation evaluates
the candidate answers and how DualNet combines them to
extract the correct answer. We visualized a feature space us-
ing t-SNE [17] in Fig. 4. The embedded feature space seems
easily separable by the question type.

As for abstract images, our DualNet method significantly
outperformed the other method.Our model performed better

than other methods both on open-ended and multiple choice
tasks. Although we cannot obtain a good result only by
ResNet image features as in Section 2, combining holistic fea-
tures and image features through our method improved the
performance. Our model outperformed the state-of-the-art
models by about 2.4%, and the multiplication network per-
formed better than the summation network. From this result,
we can say that our simple network structure helps to extract
discriminative features.

6. CONCLUSION

We proposed DualNet to efficiently and fully account for dis-
criminative information in images and textual features by per-
forming separate operations for input features and building
ensembles with varying dimensions. Experimental results
demonstrate that DualNet outperforms many previous state-
of-the-art methods, and that it is applicable to both real im-
ages and abstract scenes, despite their fundamentally different
characteristics. In particular, our model outperformed the pre-
vious state-of-the-art methods for abstract scenes. Since our
method was able to perform well even without an attention
mechanism, an interesting future work would be to examine
the combination of DualNet with an attention mechanism.
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