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ABSTRACT
Recently, content generation using neural network has been widely
studied. Motivated by this recent progress, we studied the gen-
eration of videos using only a label as input. In our method, we
iteratively minimize two objective functions at the same time : an
objective function to evaluate how close the video is to the target
class and another to evaluate how natural-appearing the video is.
Our proposed method uses the cross-entropy error between the tar-
get label and the output of 3D convolutional neural network (C3D)
as the objective function for evaluating how close the video is to
the target class and uses the Euclidean distance between the in-
put video and the video decoded from our temporal convolutional
auto-encoder ("tempCAE") as the objective function for evaluating
how natural-appearing the video is. We conducted an experiment
evaluating the generated videos using a crowdsourcing service and
confirmed the utility of our method.
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1. INTRODUCTION
Content generation from neural networks (NNs) has been widely

studied. It can be considered that we can recognize the charac-
teristics of an NN by generating an image from it. Simonyan et
al. [1] studied the generation of images from convolutional neural
networks (CNNs) and Gregor et al. [2] proposed the Deep Recur-
rent Attentive Writer (DRAW) neural network architecture for im-
age generation. As another approach, image reconstruction from
NNs has also been studied [3, 4].

However, studies of content generation have been limited pri-
marily to the case of image generation; video generation has been
little studied yet. Addressing this lack, this paper proposes a novel
method for generating videos using only a label as input. In this
method, we iteratively minimize the cross-entropy error between
the target label and the output score of a 3D convolutional neural
network (C3D) [5], as an objective measure of how close the video
is to the target class, and simultaneously minimize the Euclidean
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Figure 1: Some examples of video generated by our method.
Input is the target label of the video and output is a video of the
target label.

distance between the input video and the video decoded from our
proposed temporal convolutional auto-encoder "tempCAE", as a
measure of how natural-appearing the video is. The idea of tem-
pCAE is an extension of the idea of convolutional auto-encoder
(CAE) [6] to video. We created a very simple dataset of moving
objects and conducted generating experiments on it; some gener-
ated results are shown in Figure 1.

Our contributions are the following:

1. We propose a novel method for generating videos from a la-
bel alone; the method works by minimizing the cross-entropy
error between the target label and the output score of a C3D
and minimizing the Euclidean distance between the input
video and the video decoded using our proposed temporal
convolutional auto-encoder.

2. We propose "temporal convolutional auto-encoder" for ex-
tracting temporally local features of videos.

3. We propose a novel method for improving the naturalness of
the appearance of generated videos using our temporal con-
volutional auto-encoder.

4. We demonstrate video generation on a dataset we created and
conduct an evaluation experiment using a crowdsourcing ser-
vice.

2. RELATED WORK
In this section, we introduce the relevant concepts of image re-

construction, image generation, and video reconstruction.
Simonyan et al. [1] studied image generation using CNNs trained

on the ImageNet dataset [7]; they computed the target score of the
output of the CNN and took the image whose score was highest as
the generated result. Gregor et al. [2] proposed the Deep Recurrent
Attentive Writer (DRAW) neural network architecture for image
generation; their method incorporates attention mechanisms into
recurrent neural network (RNN) architectures. Mansimov et al. [8]
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extended Gregor et al.’s architecture for generating images from
captions with attention.

Image reconstruction using CNNs has also been studied. Recon-
struction is different from generation in that the network is given
an image as input. Mahendran and Vedaldi [3] reconstructed input
images from an intermediate layer of the CNN by minimizing the
Euclidean distance of a feature at that layer. In addition, Dosovit-
skiy and Brox [4] reconstructed input images from an intermediate
layer of AlexNet [9] by using an up-convolutional neural network.

As for research in video reconstruction, although Srivastava et
al. [10] investigated video reconstruction and future prediction us-
ing long short-term memory (LSTM), they focused only on video
reconstruction with a video given as an input to LSTM and did not
focus on generating video from a label alone.

In this way, as the topic of the content generation, image recon-
struction, image generation, video reconstruction have been stud-
ied. However, the video generation has not been studied yet. Then,
this paper proposes a novel method for generating videos from a la-
bel alone, and we conduct an experiment evaluating the generated
videos using a crowdsourcing service and confirmed the utility of
our method.

3. METHOD
In this section,after describing an existing image-generation method,

C3Ds, convolutional auto-encoder (CAE), and our temporal convo-
lutional auto-encoder ("tempCAE"), we introduce our video-generation
method. A C3D and tempCAE are modules of our system for video
generation.

3.1 Image Generation
As an existing method for image generation, we introduce Si-

monyan et al.’s method [1]. Simonyan et al. studied image gen-
eration using a CNN trained on the ImageNet dataset [7]. They
regarded an image X in the following expression as a generated
image:

argmax
X

S θ(X) − λ∥X∥2, (1)

where θ is the target label, S θ is the score of the target label in
the classification layer of the CNN, and λ is a regularization pa-
rameter. In other words, they sought an L2-regularized image such
that the score S θ is high. By this method, we can find an image
that the CNN strongly favors as a target image. In our evaluation
experiment, we demonstrate the video-generation by an extension
of Simonyan et al.’s method to video generation as a comparison
method.

3.2 3D Convolutional Neural Network
A 3D convolutional neural network (C3D) is a classifier for video

classification using CNN. In the conventional method for image
classification, we convolve only for the horizontal and vertical di-
rections (= 2D convolution). We can extract the spatial information
of the input image by 2D convolution. In the C3D method, by con-
trast, we convolve not only for the horizontal and vertical directions
but also for the temporal directions. From experiments conducted
by Tran et al. (the C3D developers), it is known that 3D convolu-
tion can preserve the temporal information of the input signals in
the resulting output features.

3.3 Convolutional Auto Encoder
Convolutional auto encoder (CAE) [6] is an application of AE. In

the method of CAE, we convolve the input image in the same way
as CNN and reconstruct the input image from feature map. So, the
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Figure 2: Our proposed temporal convolutional auto-encoder.
In this module, we concatenate several frames (concatenated
size) of the video to an input ’multi-channels image’ and encode
and decode input video.

formula of CAE is as follows.

encode : hk = σ(x ∗Wk + bk) (2)

decode : y = σ(
∑
k∈H

hk ∗W ′k + b′k) (3)

Therein, x, y, and hk respectively denote the input image, the output
image, and the k-th feature map. Also, H identifies the group of
feature map, and ∗ denotes the 2D convolution. So, when we train
the CAE, we train the parameters Wk, W ′k, bk, and b′k in the above
formula.

3.4 Temporal Convolutional Auto Encoder
As an auto-encoder for video, we propose the temporal auto-

encoder "tempCAE". The idea of tempCAE is an extension of the
idea of CAE [6] to the case of video. We show an overview of the
method in Figure 2. In this method, we concatenate some frames
(concatenated size) of the video to an input "multi-channels image"
and encode the input to the feature map in the same way as 3D
convolution. After encoding, we decode in the same way as normal
auto encoder (AE). So, the formula of tempCAE is as follows.

encode : h[i,CS ] = σ(x[i,CS ] ∗W + b) (4)
decode : y[i,CS ] = σ(h[i,CS ] · W̃ + b′) (5)

Therein, CS denotes the size of concatenation (= concatenated
size). Also, x[i,CS ], h[i,CS ], and y[i,CS ] respectively denote an
input "multi-channels image" to which we concatenated the some
frames (from the i-th frame to the i+CS -th frame of the video), the
feature map, and the output image. Also, ∗ and · respectively de-
note the 3D convolution and the linear multiplication. In the train-
ing step of tempCAE, we train the parameters W, W ′, b, and b′

in the above formula. We can extract temporally local features of
videos using tempCAE.

3.5 Video Generation
We establish two objective functions as follows.

LC3D(X) = −
N∑
θ

C3D(X, θ) log Y(θ) (6)

LtempCAE(X[i,CS ]) = ∥tempCAE(X[i,CS ]) − X[i,CS ]∥2 (7)
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Figure 3: System for generation of videos from a label alone. In this system, we generate video by iteratively minimizing two
objective functions (the cross-entropy error between the target label and C3D output, as an objective measure of how close the video
is to the target class, and the Euclidean distance between the input video and the video decoded from tempCAE, as a measure of how
natural-appearing the video is) at the same time.

Therein, C3D(X, θ) denotes the output score of category θ when
the video X is input to C3D, and tempCAE(X[i,CS ]) denotes the
decoded video when the some frames (= from the i-th frame to the
i + CS -th frame) of video is input to tempCAE, and Y(θ) denotes
the target score of θ (so, Y(θ) will be 1.0 or 0.0). In short, Func-
tion (6) represents the cross-entropy error between the target label
and output score of C3D (we call this the "target error"), and Func-
tion (7) represents the square of the Euclidean distance between the
generated video and video decoded from tempCAE (we call this the
"decoded error"). N denotes the number of classes.

The reason we establish the above objective functions is as fol-
lows. If the target error is minimized, it means that the video has
features similar to the target video. However, just the fact that the
target error is minimized doesn’t necessarily mean that the gener-
ated video appears natural to people who view it. Therefore, we use
the decoded error of the video. If the decoded error is minimized,
it means that the generated video has features similar to the entire
training datasets and that the video looks natural to people. For
these reasons, we regard a video X that minimizes above objective
functions as a generated result.

After we trained C3D and tempCAE on a video dataset, we use
these trained networks to generate videos. For the video generation
process, we started with a random video and updated it so that it
approached the target class depending on the values of the above
objective functions. As the updating method, we used a gradient
descent (GD) method as follows.

Xt+1 = Xt − ηC3D
∂LC3D

∂Xt
− ηtempCAE

∂LtempCAE

∂Xt
(8)

Therein, ηC3D, ηtempCAE respectively denote updating weight of C3D
and tempCAE. We show an overview of our system in Figure 3.

4. EXPERIMENTS
We experimented on a simple video dataset that we created for

the purpose.

4.1 Datasets
Although large video datasets such as HMDB51 [11] and UCF101

[12] already exist, these datasets are too complicated to use for
generating videos, and it is unreasonable to do video-generation
experiments on them. As a dataset to use in our video-generation
experiments to confirm the utility of our method, it is desirable that

!"#$

%&'(')*+(,-(,.$(/$0,

1-23$,(0/"$+()4

5."4(')*+(,-(,.$(/$0,

Figure 4: Some examples from the dataset we created.

the objects of each class are simple and the moving of each class
is easy-to-understand. Thus, we created a simple dataset to use in
our video-generation experiments. The details of the dataset are as
follows.

• the number of classes : 11 classes (a car runs to the right/left,
a rocket flies up/down, an airplane flies up/down, a ship runs
to the right/left, a bicycle runs to the right/left, a balloon flies
up)

• size of dataset : 200 data for each class

• size of videos : 128 * 96 px, 16 frames

We show some examples from our dataset in Figure 4 and other
examples in supplemental material.

4.2 Comparison Method
As the comparison method in our video-generation experiments,

we set the following two objective functions:

LC3D(X) = −
N∑
θ

C3D(X, θ) log Y(θ) (9)

Lnorm(X) = ∥X∥2 (10)

The function (9) represents the cross-entropy error between the tar-
get label and the output score of C3D, and the function (10) rep-
resents the L2 norm of the generated video. So, in this method,
we would like to find an L2-regularised video such that the cross-
entropy error between the target label and the output score of C3D
is minimized. In short, it can be considered that this method is ex-
tension of Simonyan et al.’s image-generation method (mentioned
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in Section 1) to video-generation. As the updating method, we used
a gradient descent (GD) method as follows.

Xt+1 = Xt − ηC3D
∂LC3D

∂Xt
− ηnorm

∂Lnorm

∂Xt
(11)

Therein, ηnorm is a regularization parameter.

4.3 Results
We experimented on our simple video dataset. It took 30 minutes

for generating a video using suitable GPU. Although the dataset
may look like too simple, in terms of computational cost, it can be
considered that such a simple dataset is appropriate for experiments
on new method.

We show some of the generated videos in Figure 5 and others
in supplemental material. As shown in the figure, the videos gener-
ated by our method with tempCAE are more natural-appearing than
those generated by the comparison method, and we can easily rec-
ognize the video categories. Furthermore, we can see difference in
the backgrounds of the generated videos : whereas the backgrounds
in the videos generated by the comparison method are very noisy,
videos generated by our method have backgrounds that are close to
white. However, we can also see faint images of objects of other
classes (e.g., an airplane appears in the background of the video
of a car). It is reasonable to assume that the features of the other
classes appear because the dataset features were generated by using
tempCAE trained on the entire dataset.

4.4 Evaluation
To evaluate our method quantitatively, it is desirable to have a hu-

man check the generated results. Thus, we used CrowdFlower [13]
which is a crowdsourcing service where we can ask a member
(called a "contributor") to do a variety of tasks using CrowdFlower.
We showed contributors some videos generated by the two meth-
ods and a list of categories and asked them to choose the appro-
priate category for each video. The list of categories consisted of
11classes of the dataset, "Other", and "Unclear" (13 classes in to-
tal). The number of contributors who participated in our experi-
ment was 300. We show the results and parameters on Table 1. We
can clearly see the notable difference in the accuracy: the accuracy
of our method was more than twice that of the comparison method.

Table 1: Parameters and accuracy of CrowdFlower.
Method Iteration ηC3D ηtempCAE ηnorm Accuracy

Ours 50000 10.0 10.0 none 88.2 %
Comparison 50000 10.0 none 5.0 42.7 %

5. APPLICATION
As an application of our method, we generated new videos as

shown in Figure 6. In this application, we generated videos from
multiple labels at the same time (e.g., "Car runs to the right" and
"Rocket flies up"). In this way, our method can be applied to a
system for the generation of new videos.

6. CONCLUSION
We have proposed a novel method for generating videos by it-

eratively minimizing two objective functions at the same time: the
objective function for evaluating how close the video is to the tar-
get class and another function for evaluating how natural-appearing
the video is. As the objective function for evaluating how close the
video is to the target class, our proposal uses the cross-entropy er-
ror between the target label and the output of C3D, and for eval-
uating how natural-appearing the video is, the Euclidean distance

between the input video and the video decoded from tempCAE is
used. We conducted a video-generation experiment on our video
dataset and quantitatively evaluated the results using a crowdsourc-
ing service, and thereby confirmed the utility of our method. In
our future research, we plan to generate a larger video dataset and
develop an architecture for generating videos not only from words
but also from short captions.
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Figure 5: Some videos generated by our method and compara-
tive method.
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Figure 6: Some examples of videos generated from multiple
labels.
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