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Abstract

Memory augmented neural networks that use pointwise embeddings have been
successfully applied to one-shot learning, however, Gaussian embeddings are more
versatile and provide an opportunity to build models capturing latent structure. As
a step towards combining both, we construct a memory augmented network with
Gaussian embeddings. We provide results of one-shot classification on Omniglot
and LFW-a datasets, and since the resulting model is generative, image reconstruc-
tion results on Omniglot. Additionally, we explain how to learn more classes in
one-shot using memory augmented neural networks with a method that does not
depend on the type of embeddings.

1 Introduction

One-shot learning refers to learning from a single example. The problem has been addressed in a
number of recent studies [9, 5, 21, 7] with several generative models being introduced [15, 13]. We
build on the idea of applying memory augmented neural networks to one-shot classification [5, 17].
Similarly, we use a meta-learning strategy that usually refers to learning at two time scales. In our
case network acts as a slow learner and memory as a rapid one.

The main goal of our work is to introduce a memory augmented model with embeddings that can
better capture latent representations and would allow for structure in the latent space. For this we
use density estimations instead of pointwise embeddings. In order to get Gaussian embeddings
we employ variational autoencoder[6], thus presented generative model can also be described as a
memory augmented VAE. Inspired by [12], we use disentangled representations to separate style
and content. We treat content distribution parameters as embeddings and store them in the memory.
Additionally, we show how to parallelize training process to learn more classes in one-shot using
memory augmented networks such as [5] and present results for 400 Omniglot and 80 LFW-a classes.
To sum up, our contributions are twofold: 1. We introduce a structured generative model based on a
memory augmented network that uses Gaussian embeddings instead of pointwise; 2. We show how
to learn more classes in one-shot with the memory augmented neural networks.

2 Related work

One-shot learning is a problem of learning from a single example. It has received a lot of attention
recently [9, 5, 21] and we build our work on the application of memory augmented neural networks
to this problem [17, 5], mainly on [5]. Memory augmented networks were popularized by works
such as Neural Turing Machines [2]. The memory module in them can be addressed using either
content-based addressing, location-based addressing or a combination of both [17]. Our model uses
only content-based addressing. In the memory we store more versatile Gaussian embeddings instead

Second workshop on Bayesian Deep Learning (NIPS 2017), Long Beach, CA, USA.



Figure 1: Model overview. We use a VAE with two independent latent variables zc and zs, where zc
is responsible for the content and zs for the style. Only the distribution parameters for zc are stored
in the memory.

of pointwise embeddings. We use disentangled representations in an attempt to introduce simple
structure in the latent space. Application of disentangled representations to one-shot learning has
been studied before, e.g. in [3].

Meta-learning or learning to learn usually refers to learning at two time scales. Rapid learner learns
the specific details while slow learner learns more general information [17]. Meta-learning has been
applied to one-shot learning in several works [17, 21, 5]. In our case network acts as a slow learner
and memory as a rapid one.

Additionally, our model is generative. Several generative models have already been introduced for
one-shot learning, e.g. [15], including a recent memory augmented generative model [1] that operates
in a different way from ours.

3 Method

3.1 Description

The model can be described as a memory augmented neural network with Gaussian embeddings or as
a memory augmented VAE [6] with disentangled representations. Overview of the model is provided
in the figure 1.

In the case of a VAE one latent variable is usually used. Recently a lot of work has been done in
order to allow for more complicated structures in the latent space. Inspired by [12, 11] we use two
independent latent variables zc and zs, where zc is responsible for the content and zs for the style.
Latent variables are assumed to be independent and distributed according to the normal distribution
with a diagonal covariance matrix.

zc, zs ∼ p(zc, zs) = N (0, I)N (0, I)

zc, zs|x ∼ qφ(zc, zs|x) = qφ(zc|x)qφ(zs|x) x|zc, zs ∼ pθ(x|zc, zs)
Here qφ is the posterior outputted by an inference network with parameters φ, and pθ is the likelihood
outputted by a generator network with parameters θ.

Only zc is used to classify samples. Its distribution parameters are treated as class embeddings and
stored in the memory. When a new sample arrives, label of the most similar element in the memory is
returned. If the answer is correct, stored parameters are updated, otherwise a new element is created.
The memory module is not differentiable and uses only content-based addressing.

Symmetric KL divergence mapped to [0, 1], where 1 corresponds to the most similar, is used as a
similarity measure:

similarity(qφ(zc1), qφ(zc2)) = exp{−(DKL(qφ(zc1) ‖ qφ(zc2))+DKL(qφ(zc2) ‖ qφ(zc1)))} (1)

Cluster update is done according to [16] that was proved to minimize KL divergence between a new
distribution and the mixture.

µnew = w1µ1 + w2µ2
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Model 5-way 20-way
1-shot 5-shot 1-shot 5-shot

Prototypical Networks [20] 98.8% 99.7% 96.0% 98.9%
Matching Network [21] 98.1% 98.9% 93.8% 98.5%
CNN with Memory Module [5] 98.4% 99.6% 95.0% 98.6%
Ours (ntrain = ntest) 97.4% 98.9% 92.3% 98.4%
Ours (ntrain < ntest) - - 92.6% 97.9%

Table 1: Omniglot results. Here ntrain = ntest stands for training and testing on the same number of
classes with the batch size of 16. In the case of ntrain < ntest the model was trained for a 5-way
task with the batch sizes of 16 and tested on 20 classes.

Σnew = w1Σ1 + w2Σ2 + w1w2(µ1 − µ2)(µ1 − µ2)T =

= [we approximate the last matrix with a diagonal one] =

= w1Σ1 + w2Σ2 + w1w2diag(µ1 − µ2)(µ1 − µ2)T

Here w1, w2 are mixture components weights that we approximate as w1 = k−1
k , w2 = 1

k , where k
is a shot number.

The memory module operation is based on [5], except the fact that we use only content based
addressing. Similarly, the triplet loss [18] is used to enforce embeddings to be amenable to one-shot
learning. Using similarity definition from the equation 1, we define the triplet loss in our case as:

triplet loss = max(similarity(q, qneg) + (1− similarity(q, qpos)) + α, α)− α,
where α > 0 is a small constant, we used α = 0.1.

Total model loss consists of the sum of the triplet loss and the VAE loss [6] that has a latent loss
and a generative loss parts. Additionally, to force the content description to be stored in zc we add a
generative loss for restoring an image with zc from a different sample of the same class.

total loss = c1triplet loss + c2latent loss + c3(generative losszc1 + generative losszc2),

where c1, c2, c3 are loss weights.

3.2 Learning more classes in one-shot

One-shot learning is often formalized as an N -way K-shot learning, where N is the number of
classes to learn and K is the number of times a sample from one class is presented. Results are
usually reported for (5 to 20)-way learning for Omniglot and for 5-way for miniImageNet, e.g.
[5, 21, 17, 7]. [21, 5] use the same number of classes is used for training and testing. However, when
a network is augmented with memory and trained using mini-batch gradient descent with embeddings
for all batches stored in the same memory similarly to [5], it is effectively trained to do one-shot
learning for (number of batches× number of classes in a batch) classes because all of them must be
distinguished between one another. This observation allows to parallelize the training process. It is
model-independent as long as a model is augmented with external memory and embeddings for all
batches are stored in the same memory.

4 Experiments

We tested our model on Omniglot, LFW-a and miniImageNet [21] datasets. Results on Omniglot were
slightly lower than the state-of-the-art, while miniImageNet results were poor, suggesting that datasets
with high interclass variability are not suitable for the method now, so they are not provided. Instead
we tested our model on the LFW-a dataset resizing images to be the same size as in miniImangeNet.

4.1 Omniglot

Omniglot dataset was introduced in [9]. It consists of 1623 characters from 50 alphabets, each
hand-drawn by 20 people. We preprocessed it in the same way as in [21], augmenting it with random
rotations by multiples of 90 degrees. 1200 classes are used for training and remaining classes for
evaluation. Results are presented in tables 1 and 2. Examples of the images reconstructed during
100-way test are given in the figure 2.
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Model 100-way 400-way
1-shot 5-shot 1-shot 5-shot

Ours 82.2% 92.8% 71.4% 87.1%

Table 2: Omniglot results. The model was trained
for a 5-way task with a batch size of 20 and for a
20-way task with a batch size of 20 and tested on
100 and 400 classes respectively.

Figure 2: 100-way Omniglot test. First row: orig-
inal images. Second row: reconstructed images.

Model 5-way 20-way 80-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Ours 64.4% 84.0% 39.9% 63.4% 22.7% 44.0%

Table 3: LFW-a results.The model was trained for a 5-way task with a batch size of 16 and tested on
5, 20 and 80 classes respectively.

4.2 LFW-a

Labeled Faces in the Wild-a (LFW-a) is a database of grayscale labeled face images consisting of
more than 13,000 images of faces [22]. For the experiment were chosen only people who have 3
or more images, and all images were vertically flipped to create twice more samples and resized to
84× 84 pixels to be the same size as images in miniImageNet. Images of 343 people were used for
training and 80 for testing. Results are shown in the table 3.

5 Discussion

In general, structured knowledge representation and external memory can be seen as being vital to the
construction of artificial intelligent agents [8]. We have described a generative model combining these
properties that can be interpreted either as a memory augmented neural network that uses Gaussian
embeddings instead of pointwise or as a memory augmented VAE with disentangled representations.
Also, we have shown how to parallelize training of a memory augmented network.

Our method employs a simple structure in the latent space based on the disentanglement of content
and style and shows competitive, though slightly lower than state-of-the-art, performance on one-
shot learning tasks with datasets where such structure makes sense, such as Omniglot and LFW-a.
Different ways of introducing structure in VAE latent space have been studied recently, e.g. [4, 10],
and we suggest that a richer structure should allow our model to capture more complicated dependen-
cies. Additionally, usage of distributions in place of pointwise embeddings opens other interesting
applications for memory augmented networks, such as continual learning through experience replay
[14, 19]. We leave them as directions for the future work.
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