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Abstract

Kernel approximation methods are important tools for
various machine learning problems. There are two ma-
jor methods used to approximate the kernel function: the
Nyström method and the random features method. However,
the Nyström method requires relatively high-complexity
post-processing to calculate a solution and the random fea-
tures method does not provide sufficient generalization per-
formance. In this paper, we propose a method that has good
generalization performance without high-complexity post-
processing via empirical orthogonal decomposition using
the probability distribution estimated from training data.
We provide a bound for the approximation error of the pro-
posed method. Our experiments show that the proposed
method is better than the random features method and com-
parable with the Nyström method in terms of the approxi-
mation error and classification accuracy. We also show that
hierarchical feature extraction using our kernel approxi-
mation demonstrates better performance than the existing
methods.

1. Introduction

Analyzing data with nonlinearity is one of the main tasks
in machine learning. The kernel method maps input data
into a high-dimensional feature space and computes the
similarity in the feature space without computing the co-
ordinates of data in that space. The computational com-
plexity of the kernel method is determined by the size of
data, regardless of the dimension of the feature space. The
kernel method is applied to the classifiers and dimension-
ality reduction techniques, such as the kernel support vec-
tor machine (SVM) [6], kernel principal component anal-
ysis (PCA) [23], and kernel canonical correlation analysis
(CCA) [12]. However, the complexity of kernel methods
grows quadratically or cubically with the amount of the
training data, which makes it difficult to scale directly for

large-scale datasets. A method that approximates the ker-
nel function using the inner product of the nonlinear feature
functions, which map data into a relatively low-dimensional
feature space, is useful because it is compatible with fast
linear classifiers.

There are two major methods for approximating the ker-
nel function: the Nyström method [8, 25] and the random
features method [20]. The Nyström method generates low-
rank approximations of the Gram matrix calculated from
training data. For the random features method, the kernel
function is expressed as the expectation value of the in-
ner product of feature functions, which are randomly sam-
pled from a proper probability distribution. However, the
Nyström method requires the calculation of a D × D in-
verse matrix at the learning phase, where D is the feature
dimension, and requires O(D2) post-processing at the clas-
sifying phase. Hence, we cannot use a high-dimensional
feature when using the Nyström method. To derive greater
generalization ability, the random features method requires
the feature to have the same number of dimensions as the
number of training data, making it difficult to take advan-
tage of the approximation.

In this paper, we propose a method to closely approx-
imate the kernel function via empirical orthogonal decom-
position without post-processing for the features. In the pro-
posed method, the kernel function is decomposed using the
probability distribution estimated from training data, which
enables it to have a high approximation ability. As the
proposed method directly approximates the kernel function,
post-processing for the features becomes unnecessary. We
show that the spectral norm of the approximation error of
the Gram matrix is bounded using eigenvalues and the dis-
tance between the true and approximate distributions. We
also present the calculation method of the proposed kernel
approximation using the Gaussian kernel.

Kernel approximations are also used to construct a hi-
erarchical image feature by iteratively building kernels be-
tween image patches [2, 3, 4, 5, 17]. We combine our
approximation method with convolutional kernel networks



(CKN) architecture [17] and propose a novel method for un-
supervised feature learning without a time-consuming opti-
mization process.

The results of our experiments show that the proposed
method is better than the random features method and com-
parable with the Nyström method in terms of the approx-
imation error and classification accuracy. The proposed
method for unsupervised feature learning demonstrates bet-
ter or comparable accuracy with a shorter learning time than
CKN. Our contributions are as follows:

• We propose a method to construct the feature functions
that do not need post-processing by decomposing the
kernel function using the probability distribution esti-
mated from training data.

• We provide a bound for the approximation error of
the proposed method and present a calculation method
when we assume the Gaussian kernel and a Gaussian
distribution.

• Experimental results on artificial and real datasets
show that the proposed methods demonstrate perfor-
mance that is better than the random features method
and comparable with the Nyström method with lower
complexity.

• Experimental evaluations of the unsupervised fea-
ture learning method show that the proposed method
demonstrates better or comparable accuracy with
CKN.

2. Related work
There are many kernel approximation methods; however,

we briefly introduce the Nyström method and random fea-
tures method because we shall focus on these methods to
approximate the kernel function using the inner product of
nonlinear feature functions.

2.1. Nyström method

The Nyström method approximates the true Gram matrix
using kernel similarity to randomly sample data from train-
ing examples. Let {x1, x2, · · · , xD} denote the subset of
samples and KD = UΛU t denote the eigen-decomposition
of the Gram matrix generated by the subset of samples, then
the Nyström method maps input x in the following way:

Λ−1/2U t(k(x, x1), k(x, x2), · · · , k(x, xD))t (1)

To analyze Nyström methods, the bound of the spectral
norm of the approximation error is usually calculated.
Drineas et al. [8] showed that the approximation error is
O(D−1/2). Because Bartlett et al. [1] showed that the gen-
eralization error of the kernel method is O(N−1/2), where

N is the size of training data, the required number of sam-
ples D should be O(N) to achieve a small approximation
error. According to the analysis of Yang et al. [29], the
number of samplesD is reduced toO(N−1/2) by assuming
that there is a large gap between the eigenvalues. Kumar et
al. [11] provided a detailed comparison of various fixed and
adaptive sampling techniques. However, an O(D3) calcu-
lation of K−1/2 of the sample Gram matrix is required, and
O(D2) post-processing for each datum is required, which
is time-consuming when D is large.

2.2. Random features method

The random features method approximates the kernel
function using an inner product of randomly sampled fea-
ture functions.

Definition 2.1. For kernel k on domain X , if there are
functions fω parameterized by ω and parameter distribu-
tion p(ω) that fulfill the equality

k(x, y) = Eω[fω(x)
∗fω(y)] =

∫
dωp(ω)fω(x)

∗fω(y),

(2)
then a random feature is a method that samples D ωds i.i.d
from p(ω) and maps x→ 1√

D
(fω1(x), ..., fωD

(x)).

If fω is uniformly bounded, then we can show that we
can approximate the original kernel with high probability
using a sufficiently large dimension D by applying Hoeffd-
ing’s inequality.

Rahimi and Recht [20] proposed a random feature using
trigonometric functions for a shift-invariant kernel in Eu-
clidean space Rd. A shift-invariant kernel is a kernel that
can be calculated using only the difference between two in-
puts, such as k(x, y) = ϕ(x − y). Rahimi and Recht [20]
constructed a random Fourier feature using Bochner’s theo-
rem, which connects shift-invariant kernels with probability
distributions in Fourier space.

Theorem 2.1 (Bochner [22]). For ϕ corresponding to a
shift-invariant kernel, there is a probability p(ω) on Rd that

k(x, y) = ϕ(x− y) =

∫
dωp(ω)eiω(x−y) (3)

holds.

According to Bocher’s theorem, the shift-invariant ker-
nel is a Fourier transform of some distribution. By sampling
ωd from this distribution p(ω), the mapping

x→ 1√
D

(
eiω1x, ..., eiωDx

)
(4)

approximates the original kernel. Additionally, the method
that uniformly samples bd from [0, 2π] and maps

x→ 1√
D

(√
2cos (ω1x+ b1) , ...,

√
2cos (ωDx+ bD)

)
(5)



also becomes a random feature, which is used to make the
feature value real. We use this form for the experiments.
This feature function is uniformly bounded, so it fulfills the
condition for Hoeffding’s inequality.

The framework of Eq. (4) is simple and versatile, but be-
cause the feature is random, the feature tends to be verbose.
To solve this problem, Hamid et al. [9] proposed a method
that oversamples ω and projects it in a lower-dimensional
space, where the projection matrix is also randomly sam-
pled. Yang et al. [27] proposed a method to use quasi-
Monte Carlo instead of i.i.d. random variables. To decrease
the complexity, Le et al. [13] proposed a method to approx-
imate a feature function with complexity O(D log d).

As an application for data mining, Lopez-Paz et al. [15]
combined a random feature with PCA and CCA and showed
that they approximate kernel PCA and kernel CCA. Lu et
al. [16] reported performance comparable with deep learn-
ing by combining multiple kernel learning and the compo-
sition of kernels. Dai et al. [7] and Xie et al. [26] proposed
a method that combined a random feature with stochastic
gradient descent to construct an online learning method.

Yang et al. [28] proposed the random Laplace feature for
the kernel k(x, y) = ϕ(x+y) on a semi-group (Rm > 0,+)
and applied it to kernels on histogram data, such as bag of
visual words.

However, Rahimi and Recht [21] reported that the gener-
alization performance using a random feature isO(N−1/2+
D−1/2). Thus, we need to sample O(N) random features
to gain sufficient generalization performance, so the com-
plexity does not decrease.

3. Proposed method

3.1. Approximation method

The Nyström method uses information from input data
as the feature function and provides good generalization
performance, but requires post-processing of the feature.
The random features method approximates the kernel func-
tion and does not require post-processing of the feature.
The information required to obtain the feature function
p(ω), eiωx requires only the kernel function, and hence, it
provides lower generalization performance. In this section,
we propose a method that approximates the kernel function
using information from input data to overcome the limita-
tions of both methods.

First, from Mercer’s theorem [18], we can represent the
kernel k on domain X with finite measure µ as

k(x, y) =
∞∑
i=0

λiψi(x)ψ
∗
i (y), (6)

using eigenvalues λi and the normalized eigenfunctions ψi

of the positive definite operator Tk on L2(X) such that

(Tkf)(·) =
∫
X

k(·, x)f(x)dµ(x). (7)

We can regard the Nyström method as approximating this
distribution µ using the histogram of randomly sampled in-
put data. Additionally, using a shift-invariant kernel and
a Lebesgue measure, the feature corresponds to a random
Fourier feature. Because the Lebesgue measure is not finite,
the decomposition is an integral instead of a discrete sum;
therefore we need to randomly sample the feature function.

In this paper, we propose an intermediate approach that
approximates the input distribution µ using a distribution
for which its eigenfunction decomposition can be solved,
and use the eigenfunctions as feature functions. The algo-
rithm is as follows:

1. Estimate the parameter of some distribution p(x; θ) us-
ing training data.

2. Solve the eigenfunction decomposition (Tkf)(·) =∫
X
k(·, x)f(x)p(x; θ)dx using the estimated distribu-

tion p(x; θ).

3. Use λ1/2i ψi corresponding to theD largest eigenvalues
as feature functions.

3.2. Analysis of the approximation error

In this section, we evaluate the expectation and high-
probability bound for the spectral norm of the approx-
imation error corresponding to the Gram matrix, which
is important for the efficiency of the kernel approxima-
tion method. We denote the Gram matrix using N data
{x1, x2, ..., xN} by Ktrue, the Gram matrix using the pro-
posed approximation method by Kapp, and assume that
the kernel function is upper bounded by some κ such that
k(x, x) ≤ κ for ∀x ∈ X . The following holds when we use
the D-dimensional feature:

Theorem 3.1. Given the true probability density ptrue(x)
and the approximated density as papp, then

Exi∼ptrue [∥Ktrue −Kapp∥2]

≤ N

( ∞∑
n=D

λn + κ

∫
X

|ptrue(x)− papp(x)|dx

)
, (8)

holds. Additionally, for a probability larger than 1− δ,

∥Ktrue −Kapp∥2

≤ N

( ∞∑
n=D

λn + κ

∫
X

|ptrue(x)− papp(x)|dx

)

+

√
Nκ2

2
log

1

δ
, (9)

holds.



Proof. It holds that Kdiff = Ktrue − Kapp is also a Gram
matrix using kernel k(x, y) =

∑∞
i=D λiψi(x)ψ

∗
i (y), so

Kdiff is a symmetric positive semidefinite matrix. Note
that this does not hold for a random Fourier feature, which
uses an integral instead of discrete sum and does not use its
eigenvalues directly. Hence,

∥Ktrue −Kapp∥2 = λmax(∥Kdiff∥) (10)

≤ trace∥Kdiff∥ =
N∑
i=1

kdiff(xi, xi),

holds. Hence, Exi∼ptrue [∥Ktrue − Kapp∥2] ≤
NEx∼ptrue [kdiff(x, x)]. Moreover,

Ex∼ptrue [kdiff(x, x)]

=

∫
X

(ptrue(x)− papp(x))kdiff(x, x)dx

+ Ex∼papp [kdiff(x, x)], (11)

The former is bounded by
∫
X
|(ptrue(x) −

papp(x))||kdiff(x, x)|dx ≤ κ
∫
X
|(ptrue(x) − papp(x))|dx,

and using the property of eigenfunction decomposition,

Ex∼papp [ψi(x)ψ
∗
i (y)] = 1, (12)

the latter becomes
∑∞

n=D λn. Thus, the inequality for the
expectation Eq. (8) holds.

Because 0 ≤ kdiff(x, x) ≤ κ, applying Hoeffding’s in-
equality to Eq. (11), we obtain

P (
N∑
i=1

kdiff(xi, xi)−NEx∼ptrue [kdiffx]≥Nt)≤exp

(
−2Nt2

κ2

)
.

(13)
Thus, a high probability bound Eq. (9) is obtained.

From the discussion in the work by Yang et al. [29],
we require that ∥Ktrue − Kapp∥2 = O(N1/2) holds
for good generalization performance; that is, we require∑∞

n=D λn,
∫
X
|ptrue(x)− papp(x)|dx to be O(N−1/2) for

sufficient performance.

3.3. Gaussian case

As an example of an analytic solution for eigenfunc-
tion decomposition, we consider the Gaussian kernel and
a Gaussian distribution as an approximate distribution. If
the dimension d = 1, setting k(x, y) = exp(−b(x −
y)2), p(x) = N(0, 1

4a ), and using c =
√
a2 + 2ab, A =

a+ b+ c, and B = b/A, the eigensystem is as presented by
Zhu et al. [30]:

λn =

√
2a

A
Bn (14)

ψn(x) = exp(−(c− a)x2)Hn(
√
2cx), (15)

where Hn denotes a Hermite polynomial of integer order n
and is defined as Hn(x) = (−1)n exp(x2) dn

dxn exp(−x2).
The feature function is localized and better reflects the prop-
erties of the Gaussian kernel, for which the similarity di-
minishes if the data are distant, than a random Fourier fea-
ture, which does not attenuate. Additionally, as n increases
higher resolutional information can be obtained. There are
studies that use this solution for kernel learning [24, 30], but
to the best of our knowledge, the present research is the first
to learn the distribution from data and apply it to unsuper-
vised feature learning.

When the input dimension d is larger than 1 and the
covariance matrix is diagonal, the eigensystem is a prod-
uct of the above Hermite solution. Even if the covariance
is non-diagonal, the solution reduces to the case in which
covariance is diagonal by rotating the axis. To evaluate
the approximation error, we denote the feature dimension
by D and simplify the calculation by assuming a is the
same for each dimension. This bounds the general case.
Thus,

∑∞
n=D λn = ( 2aA )d/2(( 1

1−B )d − ( 1−BD/d

1−B )d) ≃
( 2aA )d/2( 1

1−B )ddBD/d = dBD/d and we can see that the
error decreases exponentially with D.

3.4. Gaussian mixture case

To approximate a more complex distribution, we con-
sider a Gaussian mixture. The analytic solution using this
Gaussian mixture is not known, so we consider approxi-
mating it using the result for a Gaussian distribution. We
denote the number of components by K and set p(x) =∑K

k=1 γkN (µk,Σk). Let (λkn, ψ
k
n) be the eigensystem for

N (µk,Σk). Because the kernel can be decomposed as

k(x, y) =
K∑

k=1

ωkk(x, y) =
K∑

k=1

∞∑
n=0

ωkλ
k
nψ

k
n(x)ψ

k∗
n (y),

(16)
we consider using (ωkλ

k
n)

1/2ψk
n(x) for larger ωkλ

k
n as fea-

ture functions.
Next we analyze the performance of this method. As the

feature function is not the true eigenfunction, the above dis-
cussion does not hold in its current form. However, we can
see that Kdiff is a symmetric positive semidefinite matrix,
and we have only to bound Ex∼p[kdiff(x, x)]. To simplify
this, we assume that ωk = 1

K and a, b are the same for
each distribution and dimension, and each µk is well sepa-
rated such that Ex∼N (µk,Σk)[ψ

k′
(x)ψk∗(y)] < R for some

R. In this case, using the result from the previous section,
Ex∼p[kdiff(x, x)] < (1+(k−1)R)dB

D
dk is obtained. Thus,

we infer that this method has an exponential gain in perfor-
mance with D.

3.5. Relation to kernel PCA

When we apply kernel methods, we often use PCA in
the projected high-dimensional space to obtain uncorrelated



useful features. The proposed methods, which use eigen-
functions, are automatically projected in the feature spaces,
so correlations between features are small. Thus, it is ex-
pected that our methods demonstrate a similar effect to
PCA.

When we use the proposed method with Gaussian distri-
bution, we rotate the input space so that each input element
is uncorrelated. Then, the axis with a large variance has
large B, so even high-order eigenfunctions with a high res-
olution are used. Conversely, the axis with a small variance
makes a small contribution to the feature vector. In partic-
ular, the axis on which only the 0-th order eigenfunction is
used only contributes to the norm of the feature, thus we can
ignore it when, for example, the features are normalized.
Thus, we can say that the proposed method also applies di-
mensionality reduction in the input space. When the input
space is d dimensional, the number of substantial dimen-
sions is d′, and we extract the D dimensional feature, the
complexity of the proposed method is O(dd′) for rotation
plus an O(d′D) calculation of Hermite polynomials. We
replace d′ with d when we use the full input vector. In all
cases, it is much smaller than the Nyström method, which
requires anO(D) calculation of kernel values between d di-
mension vectors plus an O(D2) whitening step when D is
large.

3.6. Application to unsupervised feature learning

We can combine the proposed method with CKN [17]
architecture for unsupervised feature learning. The CKN
hierarchically defines the kernel between image patches as
the summation of kernels between 2-d positions of points in
the patches multiplied by the kernels between feature vec-
tors of points. The kernel value between patches Ω,Ω′ can
be represented as follows:

K(Ω,Ω′)

=
∑
z∈Ω

∑
z′∈Ω′

∥ϕ(z)∥∥ϕ′(z′)∥e−
1

2β2 ∥δz∥2

e−
1

2σ2 ∥δϕ∥2

, (17)

where z and z′ are positions of the points, ϕ(z) and ϕ′(z′)
denote feature vectors of the points, and δz and δϕ denote
z−z′ and ϕ(z)−ϕ′(z′) respectively. When we approximate
the kernel between positions as ξpos(z)T ξpos(z′) and the
kernel between feature vectors as ξfeat(ϕ(z))T ξfeat(ϕ′(z′)),
the convolutional kernel is approximated as the linear inner
product of∑

z∈Ω

∥ϕ(z)∥ξpos(z)⊗ ξfeat(ϕ(z)), (18)

where ⊗ denotes the Kronecker product. CKN hierarchi-
cally applies this mapping and uses the feature vector of the
final layer for recognition.

The original CKN uses the approximated feature for the
kernel between positions as ξpos(z) = e

1
β2 ∥z∥2

, and uses

the approximated feature for the kernel between features in
the form of η1/2d e

1
σ2 ∥ϕ(z)−wd∥2

, and then learns ηd, wd so
that the reconstruction error of kernel values

n∑
i=1

(
e−

1
2σ2 ∥δϕ∥2

−
D∑

d=1

ηde
1
σ2 ∥ϕ(zi)−wd∥2

e
1
σ2 ∥ϕ(z′

i)−wd∥2

)2

,

(19)
is minimized, where (zi, z

′
i)

n
i=1 are patch pairs sampled

from training data and D is the dimension of the feature.
Instead of learning feature with a gradient descent, we

can use other kernel approximation methods. We propose
using eigenfunctions with distribution learned from zi, z

′
i

as an approximation function. The proposed method does
not experience a long optimization time and local minima.

4. Experiments
To test the efficiency of our methods, we compared the

approximation error of the Gram matrices, the classification
accuracy, and performance for unsupervised feature learn-
ing.

4.1. Approximation error of the Gram matrices

First, we evaluated the approximation performance us-
ing synthesized data. We set the dimensionality of the input
data to d = 10, number of samples to N = 5000, and
kernel parameter to b = 1

2d , and compared the Nyström
method (Nyström), random Fourier feature (Random), and
proposed methods (Proposed) using data sampled from the
Gaussian distribution with mean equal to 0 and a covariance
identity matrix, from the Laplace distribution with location
parameter equal to 0 and scale parameter equal to 1 as a
super-Gaussian distribution, and from a uniform distribu-
tion from [-1,1] as a sub-Gaussian distribution. For each
method, we evaluated the normalized spectral norm of the
error matrix ∥Ktrue−Kapp∥2

∥Ktrue∥2
. We set the feature dimension

D = 40, 160, 640, 2560, and the number of mixture com-
ponents to 1, 4, 16, 64. Note that if the number of mixture
components is 1, the situation is equivalent to the Gaussian
case. To estimate the parameter of the data distribution, we
used another set of N data sampled from the same distri-
bution. For preprocessing, we rotated the data so that the
estimated covariance was diagonal and used the diagonal
Gaussian mixture. This rotation did not change the kernel
value. We performed the experiment 10 times for each set-
ting and calculated the mean value.

Figure 1 shows the results. The number in the “Pro-
posed” label indicates the number of mixture compo-
nents. The figure shows that for each distribution, the
proposed method that assumed a Gaussian distribution
yielded the best approximation performance if the dimen-
sion was low. Even if the dimension was high, the pro-
posed method yielded a performance comparable with the
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Figure 1. Comparison of the approximation error for the Gram matrix on synthesized data sampled
from (left) a Gaussian distribution, (center) Laplace distribution, and (right) uniform distribution.
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Figure 2. Comparison of the
approximation error for the
Gram matrix on GoogLeNet
features extracted from the
ILSVRC2015 dataset.

TASK DATA # TRAIN # TEST # Attr. TASK DATA # TRAIN # TEST # Attr.
Reg. CPUSMALL 7392 800 12 Class. ADULT 32561 16281 123
Reg. CADATA 18640 2000 8 Class. IJCNN1 49990 91701 22
Reg. YEARMSD 463715 51630 90 Class. COVTYPE 522910 58102 54

Table 1. Statistics for the datasets.

Nyström method. Better performance for low feature di-
mensions occurred because the rough estimation of the pro-
posed method approximated the true distribution better than
the estimation using a small sample histogram from the
Nyström method. The random Fourier feature demonstrated
similar performance for each distribution, which agrees
with the fact that random features method does not use dis-
tribution information. By contrast, when we assumed a
Gaussian mixture, the performance was lower and the per-
formance gain was also smaller than the case that assumed
a Gaussian distribution in each case. The uncertainty asso-
ciated with the parameter estimation and the decrease of de-
cay speed of eigenvalues influenced the performance more
than the approximation accuracy of the true distribution.

We then compared the performance of the proposed ker-
nel approximation method assuming Gaussian distribution
using the ILSVRC2015 classification dataset. The dataset
contained approximately 1,200,000 images and we used the
output of the global average pooling layer of GoogLeNet
as input features, which are 1,024 dimensional per im-
age. We used 100,000 samples for model inference and
evaluated the normalized spectral norm of the error matrix
∥Ktrue−Kapp∥2

∥Ktrue∥2
using 5,000 randomly chosen samples. We

plotted the mean of five trials. We set the feature dimension
D = 40, 160, 640, 2560, 10240

Figure 2 shows that the proposed approximation method
demonstrates better performance even for a real image
dataset.

4.2. Classification Accuracy

We compared regression performance and classification
accuracy using real data. We used the data from the LIB-

SVM site 1. We scaled each element of the input data to
[0,1] for the classification task and [-1,1] for the regres-
sion task. Table 1 shows the statistics for the datasets.
We set the kernel parameter b = 1

2d and used LIBLIN-
EAR2 with C = 100 to compare the classification accu-
racy of the test data for classification tasks and ridge regres-
sion minw ∥Ψtw − t∥22 + λ∥w∥22 with λ = 0.01 to com-
pare the mean squared error of the test data 1

n

∑n
i=1 ∥ti −

wtψ(xi)∥22 for regression tasks. We set the feature di-
mension D = 40, 160, 640, 2560 for CPUSMALL, CA-
DATA, ADULT and IJCNN1, and 40, 160, 640 for the larger
datasets YEARMSD and COVTYPE. We set the number of
mixture components to 1, 4, 16. For parameter estimation,
we sampled 1000 data for CPUSMALL, CADATA, and
10000 data for ADULT, IJCNN1, YEARMSD and COV-
TYPE. For each setting, we conducted 10 experiments and
calculated the mean.

Figure 3 and Figure 4 show the results. The result for
Nyström is overlapped by that for Proposed1 in CPUS-
MALL. We omitted the results for Proposed4 and Pro-
posed16 in YEARMSD because, in some cases, they had
a mean squared error that was too large. The figures show
that the proposed method assuming a Gaussian distribution
demonstrated better performance than the random Fourier
feature, especially when the dimension was small. Addi-
tionally, they demonstrated comparable performance with
the Nyström method for each dimension. Because the
Nyström method requires O(D2) post-processing for each
feature, our method is more efficient considering the com-
putation complexity. Generally, the proposed method as-

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2https://www.csie.ntu.edu.tw/ cjlin/liblinear/



40 160 640 2560
0

20

40

60

80

100

feature dimension

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 

 

Random

Nystrom

Proposed1

Proposed4

Proposed16

40 160 640 2560
3.5

4

4.5

5

5.5
x 10

9

feature dimension

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

 

 

Random

Nystrom

Proposed1

Proposed4

Proposed16

40 160 640
84

86

88

90

92

94

96

98

feature dimension

m
e

a
n

 s
q

u
a

re
d

 e
rr

o
r

 

 

Random

Nystrom

Proposed1

Figure 3. Comparison of the mean squared error for the datasets (left) CPUSMALL, (middle) CADATA, and (right) YEARMSD.
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Figure 4. Comparison of the classification accuracy for the datasets (left) ADULT, (middle) IJCNN1, and (right) COVTYPE.

suming a Gaussian mixture demonstrated poorer perfor-
mance than the other methods. However, the differences
between each performance were small when the dimen-
sion was high, and Proposed16 demonstrated the best per-
formance in ADULT. The proposed methods assuming the
mixture model work well if the feature dimension is not
small and the model fits the data distribution. Generally,
when assuming a Gaussian distribution, the data distribu-
tion was sufficiently approximated and our method demon-
strated comparable performance with the Nystöm method.

4.3. Unsupervised feature learning

Next, we used the random features method, Nyström
method, and proposed method with Gaussian distribution,
which demonstrated good performance in previous experi-
ments as kernel approximation methods for CKN architec-
ture, and compared the accuracy with the original CKN.

We used MNIST [14], CIFAR-10 [10], CIFAR-100 [10],
and SVHN [19] as datasets and adopted similar network ar-
chitectures to those of Mairal et al. [17]. We denote the de-
tail of the architectures in the Appendix. We used 300,000
patch pairs for feature learning, LIBLINIEAR as a linear
classifier and determined the regularization parameter using
5-fold crossvalidation from 2i,i = −15, ..., 15.

We show the results in Table 2. In most cases, the
proposed method demonstrated better performance than

the original CKN. This is because the proposed method
did not experience local minima of the optimization and
could use the input information more efficiently. The pro-
posed method did not require a time-consuming optimiza-
tion phase, therefore it was a good choice to adopt the pro-
posed kernel approximation method for CKN architecture.
Additionally, the proposed method demonstrated better per-
formance than the random features method and compara-
ble or better performance than the Nyström method in most
settings, which demonstrated a similar tendency to that of
previous experiments. This indicates the effectiveness of
hierarchically approximating the kernel, and the proposed
method is reasonable and effective.

Additionally, we showed the covariance of the rescaled
first 400-dimensional feature in the final layer learned from
CIFAR-10 with setting 1 in Figure 5. The figure shows
that while CKN had relatively large non-diagonal covari-
ance, the proposed method demonstrated uniformly small
non-diagonal covariance, which agrees with the argument
that the proposed method demonstrated a similar effect to
PCA.

Additionally, we varied the number of feature maps in
the final layer to 200, 400, 600, 800 and evaluated the per-
formance using CIFAR-10 with setting 1. We show the re-
sult in Figure 6. As the dimension decreased, the method
using random features demonstrated poorer performance



Setting CKN Random Nyström Proposed
MNIST

1 99.34 99.49 99.38 99.36
2 99.28 99.46 99.48 99.43
3 99.42 99.45 99.47 99.51

CIFAR-10
1 74.59 75.93 75.72 76.00
2 79.19 80.73 81.52 81.27
3 77.41 77.68 78.57 78.29

CIFAR-100
1 43.25 43.64 43.36 43.66
2 53.37 55.20 54.44 55.01
3 50.41 51.02 50.53 51.04

SVHN
1 91.80 91.54 91.96 91.98
2 90.79 90.75 91.18 91.36
3 85.52 85.60 85.88 86.05

Table 2. Classification accuracy for MNIST, CIFAR-10, CIFAR-
100, STL-10, and SVHN.

Figure 5. Covariance of learned feature for (top left) CKN, (top
right) Random, (bottom left) Nyström, and (bottom right) Pro-
posed. The proposed method shows less non-diagonal covariance.

than the proposed method and Nyström method, which
illustrates the importance of using input information for
approximation. Conversely, these three methods demon-
strated similar performance when the dimension was 200.
This suggests that when the dimension was very small,
the input information was not sufficient and we needed
to include discriminative information in learning. In any
case, the proposed method demonstrated much better per-
formance than the original CKN.
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Figure 6. Accuracy of CKN with fewer feature maps.

5. Conclusion

We proposed an approximation method that first inferred
the distribution of input data and then used the eigenfunc-
tions of the operator using the kernel function and the ap-
proximated distribution as feature functions. The proposed
method used information from the input data for the fea-
ture function and therefore exhibited better performance
than the random features method, which only used infor-
mation from the kernel. Additionally, because the proposed
method directly approximated the kernel function instead
of the Gram matrix, no post-processing of the feature was
required. The approximation error for the proposed method
can be bounded using the divergence of the true and approx-
imated distribution and the eigenvalue of the integral opera-
tor using the kernel. We showed how to calculate the feature
function for a Gaussian kernel and the approximation dis-
tribution was a Gaussian distribution or Gaussian mixture.
Experiments using synthesized and real data demonstrated
that our proposed method yielded a performance that was
better than the random features method while comparable
with the Nyström method.

There are two alternatives to expand this research. The
first is to apply our method to another kernel. In the Gaus-
sian case, we can obtain an analytic solution, but generally,
the solution is not known. However, if the kernel and dis-
tribution can be decomposed into a product of functions for
each dimension, we only need to consider a 1-dimensional
case. Additionally, if the input dimension is high, the de-
gree of the eigenfunction does not need to be high; hence,
we can approximate the eigenfunction using, for example,
series expansions. The second alternative is to approximate
more accurately the eigenfunction using a mixture distribu-
tion. In this paper, we assumed that each distribution was
sufficiently distant and used eigenfunctions for each distri-
bution. However, we need to correct the original eigenfunc-
tion, for example, by adding another eigenfunction for a
better approximation.
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